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Abstract

Given a model of a physical process and a sequence of commands and observations received over time, the task
of an autonomous controller is to determine the likely states of the process and the actions required to move the
process to a desired configuration. We introduce a representation and algorithms for incrementally generating
approximate belief states for a restricted but relevant class of partially observable Markov decision processes
with very large state spaces. The algorithm incrementally generates, rather than revises, an approximate belief
state at any point by abstracting and summarizing segments of the likely trajectories of the process. This enables
applications to efficiently maintain a partial belief state when it remains consistent with observations and revisit
past assumptions about the process’s evolution when the belief state is ruled out. The system presented has been
implemented and results on examples from the domain of spacecraft control are presented.
∗Funding for this work was provided by the National Aeronautics and Space Administration, through the Cross-Enterprise Technology

Development Program.
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Chapter 1

Introduction

This work concerns the automatic control of complex physical systems such as spacecraft or life support
systems even in the face of equipment failures or other unexpected events. The first section of this intro-
ductory chapter provides a high level introduction to the concept of a control system. The second section
motivates why additional research is needed when very successful control systems have been developed
for everything from automobile engines to cruise missiles to Furby dolls. The third section briefly intro-
duces the subject of this work, a type of control system that attempts to achieve robustness by performing
a significant amount of reasoning about the physical device it controls. The final section introduces the
remaining chapters of the document.

1.1 The Impact of Control Systems

Over the past few decades, many common machines have slowly evolved into marvels of functionality,
efficiency and reliability. At the same time they have, to the casual observer, kept their familiar forms.
Passenger aircraft, looking much like the military transports from which they were derived a half century
ago, routinely fly thousands of miles over oceans on autopilot with four, and now only two, engines.
Catastrophic failure rates measure once in millions of flights. Automotive disc brakes, first developed
in the 1890’s, now bring automobiles to a halt on ice or gravel without loss of control and without any
special skill on the part of the driver. Internal combustion engines, first used in the mid-nineteenth century,
can now power an automobile for a decade without adjustment, with significantly greater power and less
pollution than was possible in the recent past. In order to explore one of the factors driving this evolution,
let’s consider how automobile engines evolved between 1965 and 1995.

An internal combustion engine repeatedly draws air and fuel into an internal chamber where a spark is
applied, producing power from the resulting small explosions. While reliable for its day, an engine built
in 1965 is a temperamental beast compared to its modern brethren. It’s prone to hard starting at extreme
temperatures, requires adjustment every few thousand miles, and is apt to spew unburnt fuel and other
pollutants from its exhaust. If clogged filters, component failures or deliberate modifications create minor
alterations in the way air or fuel are delivered to the engine, it loses power or ceases functioning, leaving
the owner to divine what needs to be replaced or adjusted. A 1995 engine starts immediately regardless of
conditions, goes 100,000 miles without adjustment, and produces an order of magnitude less pollution than
its predecessor. The 1995 engine is impervious to any reasonable change in how fuel and air are delivered.
If component failures prevent smooth power production, the engine can often enter a “limp home” mode
that reliably produces minimal power, and report the cause of the problem to the user. This revolution
in efficiency, reliability and robustness may not seem surprising given how the world can change in three
decades. What is interesting to note is that about 80% of the parts that make up the 1965 Ford engine the
author has in mind would be indistinguishable to the casual observer from the corresponding parts of the
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Figure 1.1: Typical Control System Schematic

1995 derivative. Many of the parts are in fact interchangeable. The sole significant difference between
these two machines lies in theircontrol systems.

As illustrated in Figure 1.1, the purpose of a closed-loop control system is to receive observations from a
physical system, estimate the current state of the system, and take actions that move the system to a desired
state of operation. This general description of the problem can be applied whether one is attempting to
run an engine efficiently, land an airplane automatically, or regulate the human heart with a pacemaker.
In the case of the automobile engine, the control system must determine how much fuel to add to the air
that is entering the engine and decide at exactly what point in time to apply the spark to keep the process
running smoothly. A control system may be extremely simple. In older home thermostats, a metal spring
expands or contracts with variation in temperature and an attached switch turns the house’s heater on or
off. A control system may also be an extremely complex affair, wherein thousands of measurements are
used by a team of humans and computers to determine what action to take to control a complex process
such as refueling the space shuttle.

Conceptually, the difference between the 1965 and 1995 engines is to what extent the control system
of each is aware of the engine’s conditions and how flexibly it can respond. The control system for the
1965 engine is designed to virtually eliminate the need for on-board decision making. When the driver
depresses the accelerator pedal, a flap opens to allow more air to rush into the engine. The rushing air
flows past a fuel source, drawing fuel with it. At the factory, a fuel opening is chosen such that the amount
of air that usually rushes through the engine will draw enough fuel to provide adequate performance across
a range of usual conditions. If the air flow, air density, or fuel flow change significantly, the opening no
longer provides the right amount of fuel. The combustion process loses efficiency or simply stops. The
driver then provides the necessary expertise to change the environment to suit the control system, perhaps
by letting the car warm up before using it, spraying starting fluid in the engine, or letting excess fuel
evaporate.

In contrast, the 1995 engine is controlled by a software system that captures the expertise of Ford’s
control engineers. Sensors determine the temperature and mass of the air rushing into the engine for
each firing. The engine temperature, barometric pressure, and a number of other measurements are also
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taken. Based upon these measurements, the control software running on a computer under the dashboard
determines how much fuel is required for optimal combustion. It instructs fuel injectors in the engine
to open just long enough to spray the desired amount of fuel into the engine, and similarly controls the
moment at which the air/fuel mixture will be ignited. In the exhaust stream that results from combustion,
oxygen sensors inform the computer whether the ratio of air to fuel being burned is correct. If too little
or excess fuel is being delivered, either a sensor or the fuel injector must not be responding properly and
commands to the injectors must be adjusted accordingly. Similarly, the computer continually monitors the
output of all sensors for indications that a sensor may be malfunctioning. In this case, the output of the
sensor is ignored and the computer does its best to operate the engine using only the remaining sensors.
Then engine can even be ordered to run through a self test, wherein it changes the commands to the fuel
injectors and sparking system and watches for the appropriate responses on the sensors in an attempt to
single out problematic components. All failures, whether discovered during normal operations or active
testing, are reported to the user and can be downloaded to a diagnostic system along with any anomalous
sensor readings for further investigation.

This section was intended to suggest the following intuitions:

• The job of a control system is to adjust a machine or physical process based upon an estimate of the
current conditions of the process, in order to optimize performance.

• The estimation method and types of adjustments made in response may be very simple or quite complex.

• A machine can be made more robust to failures or environmental change if those changes are identified
and the machine is adjusted based upon how the changes will effect its operation.

• Increasing the complexity of a machine, by adding sensors, actuators and control software, can para-
doxically increase its robustness and the simplicity with which it is operated.

1.2 Problems in Machine Regulation at NASA

In this work, we will focus on situations wherein the internal state of a machine must be estimated and
controlled similar to the engine example. NASA has an endless variety of problems involving the internal
regulation of complex machines where the system must continue to operate even in the face of failures.
These include operation of human life support systems for Earth-orbit and future missions to the moon
and Mars, operation of automated propellant production systems on Mars to enable future exploration,
and diagnosis and control of vehicles in the atmosphere, Earth orbit or deep space. Given these exciting
and critical applications for control systems, an important question to ask is, why aren’t existing methods
for developing control systems adequate? The answer lies in the significant differences between these
applications and those handled so successfully by industry.

Most importantly, the economics at NASA and a manufacturer such as Ford Motor Company are re-
versed. Ford released version one of its electronic engine control system in 1984, and by the time version
five was released in 1995, it had been installed in tens of millions of relatively similar engines in Ford
vehicles. A large amount of effort could be expended to develop the initial control system, as that cost
would be amortized over many automobiles. Detailed analysis by engineers to improve performance or
reduce per unit cost could potentially be justified by the profit produced by selling millions of units. In
addition, new versions of the system could be developed incrementally at a relatively slow rate, drawing
upon the experience gained from running millions of copies of the system under varying conditions for
several years. At NASA, the current practice is to develop each spacecraft design almost from scratch over
a period of two to three years and produce only one or two copies of each design. The fully integrated
spacecraft system will often be run for only a few hundred hours or not at all before being deployed in
space. Thus our requirements upon the control system development process include:
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• Control systems must be developed cheaply and quickly in parallel with the hardware system.

• They must also be easy to modify once the fully integrated system is tested and deployed.

A second important distinction is the range of failures over which the control system is expected to
operate. If an automobile engine experiences a severe failure or a set of failures that was thought to be
highly unlikely, the control system need not continue functioning. The driver can consult the owner’s
manual for a solution or the automobile can be towed to a shop and repaired. A small amount of down
time over the life of an automobile is potentially acceptable, and understandable if a primary component
fails. In contrast, many NASA systems such as deep space probes travel far beyond the reach of easy
repair. If a component fails very early in a long mission, the control system must continue performing
state estimation and control as best it can without that component. In addition, there are critical periods
when a short down time will render useless a multi-year spacecraft mission costing hundreds of millions of
dollars. For example, if a failure were to prevent a spacecraft from properly decelerating as it approaches
a planet or other body it’s attempting to orbit, it would burn up in the atmosphere (if any) or be flung
uselessly into space. For spacecraft attempting to orbit the more distant planets, by the time mission
controllers on Earth received a radio signal indicating that something was amiss, it would be too late to
respond. Spacecraft must therefore carry their spare parts with them in the form of multiple copies of
critical components (calledblock redundancy) or multiple methods for achieving the same control action
using different components (calledfunctional redundancy).

Example 1 Consider the schematic of a simple, notional rocket propulsion system shown in Figure 1.2.
The purpose of the system is to provide just the right amount of acceleration by combining fuel and an
oxidizer in an engine for a specified amount of time. The helium tank is filled with helium under high
pressure. Conceptually, the control problem is quite simple. When the valve is opened, the high pressure
normally forces oxygen and fuel into the engine where it is ignited to produce thrust. When sufficient
thrust is achieved, the valve is closed. While this system is simple, it has the disadvantage that if any
component fails, it ceases to operate.

Figure 1.3 illustrates the redundant propulsion system used in the Cassini spacecraft, designed to last
a seven year cruise to Saturn and autonomously insert itself into orbit around Saturn. Two engines are
provided in the case that one fails. Each engine is supplied with fuel and oxidizer through a complex
arrangement of valves. Valves or pipe branches in parallel ensure that if valves stick closed, a redundant
parallel valve can be used to allow fluid flow. Valves in series ensure that if valves stick open, an upstream
valve can be closed to prevent fluid flow. Not shown are valve drivers that control the latch valves and
a set of flow, pressure and acceleration sensors that provide partial observability of the system. There
are approximately1015 possible configurations of the system including failures. Several hundred of those
configurations produce thrust, depending upon which valves are open or closed. Given a set of failures,
thrust configurations that can be reached without using a pyro valve are preferred, as pyro valves can only
be opened or closed once. Regardless of the number of failures that occur, we’d like the control system to
determine the current configuration of the propulsion system and find the best viable configuration of the
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system that will produce thrust.

The desire for robust operation over long periods without repair, and the resulting complex, redundant
systems, introduce additional control system requirements:

• Due to the number of combinations of failures that could occur over time, the control system must be
able to control the system from a very large number of possible states.

• Due to the large number of possible states, the control system cannot explicitly record what action to
take in each state.

• The control system must determine the best action, rather than simply a sufficient action, to take in
order to reach the goal configuration.

• The control system must include discrete decisions (e.g., Should a valve be opened or closed?, and
Should engine A or B be fired? )

• Because number of sensors is limited compared to the complexity of the system, the state of the system
will not be directly observable from the sensors. The control system will need to generate an estimate of
the state and act upon it.

The first three requirements above suggest that a control system cannot explicitly encode what action
to take for each possible combination of sensor readings it receives. Instead, it must have at its disposal
a general method for determining the best action to take given the sensor readings. Conceptually, such a
general method can be quite simple. For example, if we could directly measure the amount of air flowing
into an internal combustion engine, basic chemistry would require that we provide fuel in the ratio of
14.7 to 1 to the air. Our parameter (the amount of air) can vary continuously across the real numbers,
and the same control law (fuel = air/14.7) informs us how to continuously vary the fuel in response.
Unfortunately the fourth and fifth requirements make the application of traditional continuous control laws
impractical. A continuous mathematical function that takes as an input the current configuration of the
valves in the Cassini propulsion system and computes which valve to open or close first would be quite
difficult to derive, encode and understand. A continuous mathematical function that takes as input the
current sensor readings and returns the position of each valve in the Cassini system, taking into account
sensor failures, redundant information from flow sensors along the same pipe, and so on, would be equally
unmanageable. What we require is a method of simply and compactly specifying a discrete controller that
applies over all possible states of the system.

Because of the number of states, we cannot specify the discrete control system as a table of sensor
values and the discrete decisions that must be made in response. Specifying a control system via rules
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that determine what action to take, such as in an expert system or in the “if then else” statements of a
program, has the advantage that the rules can be fired regardless of the sensor values that are received. The
disadvantage is that it can be quite difficult to determine what states rules or program statements actually
cover and how the addition of new rules will affect the behavior of any existing rules. In the case of
Cassini, spacecraft engineers performed a large amount of analysis to determine the most likely failures
of the system, how to diagnose those failures from the sensor values, and the appropriate response to
each. While this provided a highly capable discrete control system, the analysis and software development
required came at a cost of over a million dollars per critical segment of the mission (e.g.,orbital insertion)
and the overall development time was several years. Thus our requirements that control systems be fast
and inexpensive to develop is not met.

What makes these techniques difficult and expensive to employ on complex systems is that they are
aimed at encoding the discrete decision processes that will be used to perform state identification and
control. In essence, encoding the process requires the control system developer to perform the decision
process by thinking through how a component failure will effect the behavior of the overall hardware
system, how that failure will be diagnosable given the sensors, and what the response should be. If the
control system must identify and account for failures in sensors or actuators that will change how the over-
all hardware system responds, performing the system level reasoning required to create the control system
can be quite complex. The more components and subsystems comprising the hardware being controlled,
the more complex this system level reasoning grows, and the more expensive and less maintainable the
resulting encoding becomes.

One approach to avoiding the cost of encoding a complex process is to encode it only once. Computer
graphics are a good analogy. An artist using a computer graphics system does not encode a specialized
process for drawing a still life. Instead, the artist describes the local properties of the objects in the scene,
such as shape, texture and position. In order to generate a photo-realistic picture of the entire scene, the
computer applies standard graphics algorithms to the local descriptions of the objects. When the local
properties of an object are changed, the algorithms are re-applied and a new scene is correctly generated.
In essence the artist describeswhat is in the scene, while the graphics algorithms capturehowto draw any
scene that can be described in a scene description language. Similarly, our approach will be to introduce
standard, reusable algorithms for discrete state identification and control that build upon techniques from
the model-based diagnosis literature. To use the algorithms, the control system developer will describe,
or model, the local characteristics of the components of a hardware system using a modeling language.
These local models will then be combined by the algorithms to perform system level state identification
and control over any state the model can attain. We will refer to the resulting system as a model-based
discrete control system. The nature of the models and algorithms that make up a model-based discrete
control system, and how they satisfy all of the requirements we have introduced, are the subject of the next
section.

1.3 Model-based Discrete Control Systems

In order to develop a model-based discrete control system, we require a language for specifying a model of
the components of our hardware, and a set of algorithms that make use of our models to perform control.
This section provides an overview of the models and algorithms used in this work through an example.
Mention Livingstone.

Example 2 Figure 1.4 represents a simple valve system that will be used as an example throughout this
document. The helium tank pressurizes the system and the valves, if open, allow a gas flow. The valve
driver unit (VDU) commands the two valves via the data bus represented by dashed lines. The valves are
commanded in parallel. The VDU can command both valves open or both valves closed.
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A model of a this hardware system must specify the components of the system (e.g., there are two
valves, a tank and a driver). For each component, the model must specify the possible states, referred to
asmodes, the component may occupy (e.g., a valve may be open, closed, stuck open, or stuck closed).
For each mode, the model must specify the component’s behavior (e.g.,a closed valve prevents flow) and
transitions (e.g.,when commanded open, a closed valve usually opens but may stick closed with some
probabilityp). All of this information can be encoded using an automaton to represent each component.
For example, a valve might be represented as shown in Figure 1.5.

The ovals in Figure 1.5 represent the possible modes of the valve,open, closed, stuck openandstuck
closed. Each mode includes a partial description of how the valve behaves in that mode. For example,
when the valve is in the closed mode, the flow through the valve is zero. The arcs specify how the mode
changes when an action is taken. Starting in the closed mode, when the command to open is given, the
most likely outcome is that the valve moves to the open mode via the darker arc. The lighter arcs represent
less likely failure transitions to the stuck open or stuck closed mode that may occur.

Using a single component, we can develop a basic intuition for how a discrete control algorithm might
work. For the sake of simplicity, the algorithm is broken down into a method for estimating the state of
the system given the sensors and a method for determining the best action to take given the state estimate.
Suppose we know a valve to be in the closed mode, and we issue the command to open the valve. We then
receive an observation of the flow and pressure, and wish to determine the new state of the valve. Suppose
the flow reported by the sensor is zero and the pressure is high. We investigate each possible transition
from the closed mode in turn. If the valve took the likely transition to the open mode, the flow through
the valve would be proportional to the pressure. It is not, so this transition, although likely, is ruled out.
Similarly, the less likely transition to the stuck open mode is ruled out by the observations. The only
transition consistent with the observations is the stuck closed mode, and this becomes our state estimate.
The basic intuition is thatstate identification is a search over the transitions of the hardware model to find
a mode that is consistent with the observations.
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Choice of a control action is accomplished in a similar manner. Suppose we again know the valve to be
in the closed mode. We wish to have flow through the valve. We first check to see if the current mode
allows flow. It does not, so we must find a path to a mode that does. We cannot use any of the arcs to
failure modes in our path, as we cannot force failures to occur. Instead, we must use only the commandable
(darker) arcs. In this case, there is only one arc from the closed mode to the open mode. Fortunately, in the
open mode there must be flow and our search ends. The basic intuition is thataction selection is a search
over the transitions of the hardware model to find a mode that enforces the desired conditions.

We can represent the basic features of the automaton of Figure 1.5 in an influence diagram, as shown
in Figure 1.6. Each arc represents the existence of one or more constraints between two variables. The
straight arcs represent that the current mode of the valve, the valve command and the transition taken
determine the next mode of the valve. The curved arc represents that in each state the pressure and mode
of the valve determine whether there is flow at the valve. As with the automaton, we can perform state
identification and action selection by performing a search over the possible transitions and examining how
each influences the observations in the next state. We can also develop an automaton for the VDU and
helium tank and represent them as influence diagrams. A combined influence diagram for the VDU system
is shown in Figure 1.7. There are variables representing the modes and transitions of the two valves, the
VDU and the tank, as well as other variables. As in the valve diagram of Figure 1.6, the pressure in the
system influences the flow through the valves. In addition, the mode of the helium tank (i.e., OK or
ruptured) determines if there is pressure. Similarly, the mode and command input to the VDU determines
the commands sent to the valves. As with the simpler model, we can perform state identification and
action selection via searches on the transitions. However, there are now four transition which require
choices, leading to 64 possible combinations for this small model. This highlights that these searches are
combinatorial optimizationproblems: in state identification, we are interested in the best (in this case,
maximum probability) combinations of choices for the transitions that make the next state consistent with
the observations. In action selection, we can assign a cost to each commanded transition and find the
best (minimal cost) combination of transitions that cause the next state to meet the desired conditions. In
Figure 1.8 we see the influence diagram for the VDU system as it is commanded four times. Note how
the pressure at valve V1 at time step 2 is dependent upon the valve mode at time step 2. The mode is in
turn dependent upon the mode at time step 1, the V1 transition at time step 1, and so on. Thus, computing
a state estimate for time step 4 requires a search over all of the transitions in the model. We’ll refer to a
sequence of transitions as atrajectory. If there are 64 transition combinations per time step, and we require
a trajectory made up of a sequence of four trajectory combinations, then there are 16,777,216 possible
trajectories. While the simple method of choosing trajectories by considering each possible trajectory and
what observations it predicts is correct, it clearly cannot be used in practice because of the number of
possible trajectories. The next section provides an overview of the research completed to address the state
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Figure 1.7: An Influence Diagram for the VDU, Two Valves and a Tank. Some arcs not shown for clarity.

identification problem for this model and models with hundreds of components.

1.4 Technical Overview of State Estimation

Given a model of a physical system and a sequence of commands and observations received over time,
the task of an autonomous discrete controller is to estimate the likely states of the system and decide
the actions required to move the system to a desired configuration. This problem can be formulated as
a partially observable Markov decision process, or POMDP, a standard problem from operations research
and computer science. Given a two-step influence diagram such as Figure 1.7, standardPOMDPtechniques
can compute a state estimate after an arbitrary number of commands and observations have been received.
This state estimate takes the form of abelief state, or the likelihood of each possible configuration of
the system. The belief state is a sufficient statistic, in that it captures all knowledge about the current
state of the system contained within the history of commands and observations. Once the belief state is
computed, there is no need to retain or re-examine any previous commands or observations. Unfortunately,
computation of the belief state requires computing the probability of every possible configuration of the
system, which is out of the question for problems of the size we hope to address.

Rather than computing a complete belief state after each command, we will focus on maintaining the
most likely trajectories of the system given the commands and observations received. Since we are only
considering a small set of trajectories at any time, it is possible that a new observation will make our set of
trajectories unlikely or even inconsistent. The most likely trajectory is then one we have not yet considered.
Finding this trajectory will require examination of the history of the system. Thus we will be performing
trajectory identification on growing structures similar to Figure 1.7. The naive approach of simply growing
the model each time the system is commanded and performing a complete search over the trajectories is
clearly insufficient. We will first consider modifying the search algorithm for state identification. Using
algorithms inspired by work in the field of model-based diagnosis, we will in the average case vastly speed
up the search process. One such technique is to implicitly rule out large numbers of trajectories that are
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Figure 1.8: An Influence Diagram for the VDU System over 4 Time Steps

inconsistent with the observations without ever explicitly considering them. We will then limit the size of
the model that is to be searched through techniques such as not explicitly representing every variable at
every time step. These techniques together comprise a practical state estimation algorithm that has been
demonstrated on complex models.

1.5 Document Overview
In the following chapters we first address state identification. We begin with a background in state identi-
fication from the areas of partially observable Markov decision processes and model-based diagnosis. We
then relate state identification to trajectory identification. We introduce the trajectory system representa-
tion that implements the intuitions of the influence diagrams presented above in the propositional logic.
Then follows a discussion of several search algorithms for the trajectory identification within the transition
system representation. Turning to the issue of model size, we introduce optimizations and approximations
that prevent the transition system representation from growing unboundedly as time passes. These mod-
ifications maintain the ability of a trajectory search algorithm to revise its assessment of how the system
evolved in the past in order to reconsider trajectories it had previously dismissed as unlikely. Finally on
the subject of state identification we present the results of testingL2 (for Livingstone2), a system that em-
bodies these ideas, on scenarios developed while applyingLivingstonewithin NASA and discuss future
work. On the subject of action selection, we first present a background from the areas of partially observ-
able Markov decision processes and model-based diagnosis and control. We then outline future work in
this area. The final chapter of this document summarizes the results achieved thus far and the work to be
completed.
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Chapter 2

Related Work in State Identification

In this chapter, we begin discussion of the state estimation portion of a discrete controller. Intuitively, we
will be commanding a system that is not completely reliable and will be receiving observations in response.
The task of state estimation is to determine the likelihood of each possible state of the system based upon
the commands and observations received thus far. Based upon these likelihoods, the appropriate next
action may then be selected. We begin the discussion with basic definitions.

Definition 1 A belief stateis a probability distribution over the possible states of the system. The like-
lihood assigned to a state by the belief state represents the controller’s belief that the system is currently
occupying that state. Ifs is a system state, we will writeb(s) for the probability value assigned to states
by belief stateb.

Definition 2 The task of state estimation is as follows. Given a model of a system, a sequence of non-
deterministic actions taken by the system, and a sequence of observations, compute the belief state.

The state estimation techniques developed in this document draw upon the techniques from two existing
formulations of the discrete control problem. The first formulation is the partially observable Markov
decision process. The second formulation, model-based diagnosis, is a related but indendently developed
formulation of the problem that brings with it a powerful set of algorithms. The two formulations, the
basic techniques associated with them, and their shortcomings with respect to our domains of interest are
discussed below.

2.1 Partially Observable Markov Decision Processes

A commonly used formalization of the discrete control problem is as a Markov decision process. For
a process to be Markov, the current state and action must provide all of the information available for
predicting the next state. That is, if we know the current state of the system, knowing the previous state of
the system cannot not add information when attempting to predict the next state of the system. We define
a Markov decision process as follows.

Definition 3 A Markov decision processis defined by the tuple〈S,A, T ,R〉, where

• S is the finite set of states of the system being tracked
• A is a finite set of actions
• T is a state transition model of the environment, which is a function mapping elements ofS × A into

discrete probability distributions overS. The actions are non-deterministic, so we writeT (s, a, s′) for
the probability that the environment will make a transition from states to states′ when actiona is taken.
• R is a reward function mappingS to < that specifies the instantaneous reward that the agent derives

from entering states. The reward is used in action selection, and is not discussed further in this chapter.
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In a Markov decision process, the state of the system is assumed to be directly observable. The proba-
bility that an action executed in the current states will result in a new states′ is determined byT (s, a, s′).
Once the action is taken, the resulting state is directly observed. Hence there is no state estimation prob-
lem. When the state is not completely observable, we must add a model of observations, to create a
partially observable Markov model.

Definition 4 A partially observable Markov decision processis defined by the tuple〈S,A,O, T ,R〉,
where

• O is a finite set of possible observations
• O is an observation function, mappingS into discrete probability distributions overO. We writeO(s, o)

for the probability of making observationo from states.

Though the current state is not known with certainty in aPOMDP, the Markov assumption that knowledge
about previous states will not improve our prediction of the next state will still prove useful in designing
a state estimator. Such an estimator can be constructed out ofT andO by straightforward application of
Bayes’ rule. Given a belief stateb, the output of the state estimator is an updated belief state,b′ For each
states′, b′(s′) can be determined from the previous belief stateb, the previous actiona, and the current
observationo. We will computeb′(s′) in two steps. Given our current belief state, we first can compute
our new belief the system is in states′ after executing actiona, but prior to receiving any observations,
denotedp(s′),

p(s′, b) =
∑
s∈S

T (s, a, s′)b(s) (2.1)

This equation is a simple consequence of the Markov property. Intuitively, every states we could have
been in has some likelihood of depositing us intos′ given the actiona. Eachs contributes tos′ according to
the likelihood we were in states and the likelihood that that states transitioned tos′. Oncep is computed,
we find the new belief ins′ conditioned upon the observationo we have received.

b′(s′) := O(s′,o)p(s′,b)
Pr(o|a,b) (2.2)

This is simply Bayes’ rule. Intuitively, conditionalizing on observation using Bayes’ rule redistributes the
probability mass according to how much more likely or unlikely it was to see the observed observation
o in states′ than in general.Pr(o | a, b) is simply a normalizing factor that represents the likelihood of
seeingo at all given our previous belief state. Specifically,Pr(o | a, b) is the marginalized likelihood of
seeingo given actiona and our previous belief stateb, defined as

Pr(o | a, b) =
∑
s′∈S

O(a, s′, o)
∑
s∈S

T (s, a, s′)b(s) . (2.3)

The resultingb(s′) function ensures that the current belief state accurately summarizes all available knowl-
edge. That is, by repeatedly applying Equation 2.2, we maintain a belief state that captures all information
contained in an arbitrarily long stream of actions and observations. Thus we have a very simple and elegant
solution to discrete state estimation. Unfortunately, it is not practical to directly apply this state estimator
in the domains we seek to address.

Consider the problem of determining the likelihood of the possible states of the propulsion subsystem
of Figure 2.1. Computing a belief state via Equation 2.2 requires enumeration of the state space. That is,
to computeb(s′) we must considerb(s) for everys ∈ S. The propulsion subsystem has 38 components
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with an average of 3 states each. The size ofS is approximately 55,000. More complete spacecraft models
capture 150 or more components averaging 4 states, yielding a state space of2300 or more1 and making
exact computation ofb(s′) implausible.

One alternative is to track an approximation whose computation does not require enumeration of the
state space. Boyen and Koller (Boyen & Koller 1998), for example, provide an approximate, factored
belief state with a bounded error that can be updated without enumerating the state space. Intuitively,
the error bound relies upon the stochasticity of the underlying system, parameterized by the problem’s
mixing rate, to continually smear both the approximate and true distributions, exponentially reducing
rather than compounding errors over time. Unfortunately, the systems we consider have inadequate mixing
rates. Intuitively, when monitoring the internal state of a complex device such as a spacecraft, the device
may behave as if it were deterministic for long periods, then exhibit a failure, then return to apparent
determinism. There is no process in place with sufficient stochasticity to quickly contract an arbitrary
error introduced by a factored approximation.

2.2 Model-Based Diagnosis

Techniques from model-based diagnosis take a different approach, incrementally generating members of
the belief state in best-first order. (de Kleer & Williams 1987; 1989). In this approach, the device is
typically modeled as a set of components. Each component has a set of variables and one or more states,
or modes, that it can occupy. Each mode has a (typically) propositional model that constrains the values
of the components variables. Thus, setting the mode of each component induces a set of constraints on
the variables of the complete model. Some of these variables are directly observable from the device,
meaning that certain assignments of the modes will not be consistent with the observations. The task is
then to assign each component’s mode so as to cause consistency with the observations.

Component modes that represent failures are assigned a cost corresponding to the prior probability of
that failure occurring in that component. An assumption is generally made that failures of components
occur independently. Thus the probability of a set of mode assignments is the product of the probability
of the mode assignments. Thus starting with the lowest cost assignment (each device in its nominal
mode) we can consider all complete mode assignments in order of total likelihood until an assignment
consistent with the observations is found. This mode assignment represents the most likely state of the
system. Using this simple best-first procedure, many inconsistent mode assignments may be found before
a consistent assignment is found. Note however that if a partial assignment to the modes introduces a set
of constraints that causes an inconsistency, every full assignment that contains this partial assignment is
also inconsistent. This partial assignment to the modes and observations is called a conflict. Recording
conflicts as candidate solutions are ruled out and not expanding further portions of the search space that
contain them can dramatically focus the search. Conflict-directed best first search,CBFS, performs best-

1That is, 2,037,035,976,334,486,086,268,445,688,409,378,161,051,468,393,665,936,250,636,140,449,354,381,299,763,336,706,183,397,376
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first search on those parts of the search space not yet known to contain a conflict. Sherlock (de Kleer &
Williams 1989) introducesCBFSand the application of diagnosing the failure modes within a stateless
system such as combinatorial circuits. Conceptually, this type of system tracks for a single step a limited
HMM where there is a single action, specified compositionally across the modes, that either has no effect
or fails some number of components. The belief state for theHMM after its one action is incrementally
generated until the desired number of possible states or amount of probability mass is accumulated.

Livingstone(Williams & Nayak 1996) adds to Sherlock the ability to transition a component’s modes
between nominal modes in response to an action in addition to moving from a nominal mode to a fail-
ure. After each action is performed,LivingstoneusesCBFSto enumerate a small number of most likely
mode assignments given the current observations and the previous mode assignments. Each partial be-
lief state is made up of only descendants of the previousn most likely states, which were determined
using only previous observations.Livingstonetracks then approximatelymost likely states of the sys-
tem. This approximation is extremely efficient and well suited to the problem of tracking the internal
state of a machine, where the likelihood of the nominal or expected transition dominates, and immediate
observations often rule out the nominal trajectory when a failure occurs. The task then becomes one of
diagnosing the most likely system transition, chosen from combinations of component transitions, that
would be consistent with the unexpected observations. Using this technique,Livingstoneis able to per-
form approximate state identification and reconfiguration of systems with hundreds of state variables. It
has been applied to the control of a number of systems within NASA and is an integral part of the Remote
Agent architecture demonstrated in-flight on the Deep Space 1 spacecraft in 1999 (Muscettolaet al. 1998;
Bernardet al. 1998). Unfortunately, the true trajectory may not be among the most likely given only the
current observations. Consider the following example.

Example 3 Figure 2.2 reintroduces the valve system from Figure 1.4. Recall that the helium tank pres-
surizes the system and the VDU commands the valves to open or close in parallel. The graph to the right
represents the probability of two possible trajectories. The filled circles represent the true state of the
system. At time 0 the VDU is off, the valves are closed and pressure is observed at the outlet of the helium
tank. At time 0 the VDU is commanded on. For the sake of illustration, consider an approximate belief
state of size 1. The state wherein the VDU is on is placed into the belief state. The true state wherein the
VDU is failed is discarded. At time 1, the VDU is commanded to open its valves. Since the only state in
the belief state assumes the VDU is on, the single state in the updated belief state has the VDU on and all
valves open. In the true, untracked state the valves are closed, as they never received a command. After
commanding the valves to open, no flow is observed downstream of the valves. Failure of the helium tank
has zero probability, given the observations. Failure of the VDU in the current time step has no effect on
the valves. Thus, the most likely next state consistent with the observations requires that all valves sponta-
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neously and independently shut. Regardless of the number of valves and the unlikeliness of spontaneous
closure, this transition must be taken if it exists. If it does not exist, the belief state approximation becomes
empty.

In general, as the true state evolves, the tracked subset of states may need to undergo arbitrarily unlikely
transitions in order to remain consistent with the observations. While only one trajectory is tracked in this
example, for any fraction of the trajectories that are tracked, an example can be constructed wherein the
actual state of the system falls outside the tracked fraction and the error in the approximation may become
arbitrarily large.

2.3 Trajectory Identification
In the next chapter, we propose an alternative to committing to a subset of the current belief state or main-
taining an approximation of the entire belief state. We propose to maintain the information necessary to
begin incrementally generating the current belief state in best-first order at any point in time. Since we
do not update the entire belief state, we do not have a sufficient statistic, so a history must be maintained.
We introduce a variable to represent every state variable, command and observation at every point in time
and an algorithm for incrementally generating the exact belief state at any point. Duplicating the entire
set of variables at each point in the history seems impractical except for short duration tasks. We apply
two approximations motivated by our experience modeling physical systems forLivingstone. The first
duplicates only a small number of carefully selected variables at each time point. This approximation is
conservative in that does not eliminate any feasible trajectories but may admit certain infeasible trajecto-
ries. These may be eliminated by future observations. The second limits the length of the history that is
maintained by absorbing older variables into a single variable that grossly approximates them. This allows
an approximate belief state to be generated at any point in time from a constant number of variables. The
variables represent an exact model of system evolution over the recent past, an approximate model over
the intermediate past, and a gross summarization over the more distant past. This allows assignment of the
most likely past transitions to be revisited as new observations become available. The fewest variables, and
thus the least flexibility, are allocated to segments of the system trajectory that have remained consistent
with the system’s observed evolution for the longest time.

15



Chapter 3

Trajectory Identification

3.1 Introduction

We wish to represent the possible histories of a system composed of non-deterministic, concurrent au-
tomata given the commands issued to the automata and their output. Figure 3.1 is a version of the valve
from Chapter 1, simplified solely for purposes of clarification. From these automata, we would like to
create a structure for representing all possible evolutions of the valve over time. We would also like a
propositional encoding so we may take advantage of techniques and intuitions developed in the model-
based diagnosis world. Based on these desires, in this chapter we introduce a propositional representation
of non-deterministic automata that is an extension of the formalism used inLivingstone. We then frame
the trajectory identification problem.

Before precisely defining the representation, we will develop an intuition using Figure 3.1. Representing
the behavior of the automaton within each state is straightforward. LetV alve be a variable representing
the possible states of the automaton. The domain ofV alve is {open, closed, stuck}. Let Flow be a
variable representing the flow through the valve, of domain{zero, nonzero}. A propositional model of
the open state of the automaton is then simply:

V alve = closed ⇒ Flow = zero

The constraints within each of the other states of the automaton can be similarly captured. For our future
convenience, we will refer to the set of formulae introduced to model the behavior of each state of each
automaton in the system asMΣ. Capturing the transitions of the valve automaton in propositional logic
is slightly more challenging. There is no operator to capture that when a command is given to the valve,
it non-deterministically chooses with some probability to transition from open to closed or open to stuck
closed. A simple way to capture this non-determinism in the valve is to introduce a choice variableτvalve.
Figure 3.2 illustrates the augmented automaton. We may now simply model the choice of transitions taken

cmdIn=open

stuck
closed

Flow=zero

closed
 Flow=zero

cmdIn=close

open
Flow != zero

Figure 3.1: A Simplified Valve Automaton
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from the closed state, for example, as the choice of assignments to the free variableτvalve. To represent the
possible outcomes of the open command at timet, we must introduce variables to represent the valve at
timest andt+ 1, and a variable to represent the non-deterministic choiceτvalve at timet. The transitions
from the closed state of the valve automaton can then be modeled by the following formulae:

V alvet = closed ∧ τvalve,t = nominal ⇒ V alvet+1 = open

τvalve,t = stick ⇒ V alvet+1 = stuck

For our future convenience, we will refer to the set of formulae introduced to model the behavior the transi-
tions of each automaton in the system asMT . A trajectory of the valve is an assignment to the variables
τvalve,0, τvalve,1, τvalve,1, . . .. The prior probability of the valve sticking at any point can be captured as
the probability that Nature makes the assignmentτvalve,t = stick. Given the appropriate independence
assumptions, the set of valve trajectories can be incrementally enumerated in order of prior probability.
Trajectories that are inconsistent withMΣ given the observations such as the actual flow observed, need
not be considered. This is the kernel of the our approach to state estimation problem. The remainder of
this chapter introduces the transition system formalism more precisely and elaborates on the assumptions
being made.

3.2 Transition systems
Definition 5 A transition systemS is a tuple〈Σ, T ,D, C, MΣ, MT ,Γ〉, where

• Σ is a set ofstate variablesrepresenting the state of each automaton. Letn denote the number of
automata andm denote the number of discrete, synchronous time steps over which the state is to be
tracked. Σ then containsm × n variables. Σt will denote the set of state variables representing the
state of the system at time stept. Each state variabley ranges over a finite domain denotedδ(y). The
temporal variable representing the occurrence of variabley at time stept is denotedyt.
• T is a set oftransition variables. The transition variable that represents the non-determinism in the

transition of state variabley from timet to t+ 1 is denotedτy,t. That is, if there aren non-deterministic
outcomes of the transition in the value ofy, τy,t will have a domain of sizen.
• Γ represents a likelihood function onT . The exact nature ofΓ is discussed below. ConceptuallyΓ(τy,t)

represents the probability distribution over the outcomes of the transitions of variabley.
• D is a finite set ofdependent variables.
• C is a finite set ofcommand variables.
• Statest is an assignment toΣt∪T t∪Dt∪Ct
• MΣ is a propositional formula overΣt andDt that specifies the feasible subset of the state space. A

state is feasible if it makes an assignment toΣt∪Dt that is consistent withMΣ.
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• MT is a propositional formula overΣt, Dt, Ct, T t andΣt+1 that specifies the feasible sequences of
states.MT is a conjunction of transition formulae modeling possible evolutions ofyt to yt+1 of the
form

φt ∧ (τy,t = τ∗)⇒yt+1 = y∗

whereφt is a propositional formula overΣt∪Dt∪Ct, and τ∗, representing a choice among the non-
deterministic transitions ofy, is in δ(τy,t). The sequencesi, si+1 is feasible if the assignment made by
si∪si+1 is consistent withMT .

Example 4 We introduce a transition system to model a VDU and two valves. For the sake of brevity
we have omitted the helium tank. The variables corresponding to the VDU consist of a state variablevdu
representing the possible VDU states (on, off, or failed), the transition variableτvdu, a command variable
cmdin representing commands to the VDU or its associated valves (on, off, open, close, none), and a
dependent variablecmdout representing the command the VDU passes on to its valves (open, close, or
none). The feasible states of the VDU are specified by the formulae below that belong toMΣ.

vdu = on ⇒ (cmdin = open⇒ cmdout = open)
∧ (cmdin = close⇒ cmdout = close)
∧ ((cmdin 6= open ∧ cmdin 6= close)
⇒cmdout = none)

vdu = off ⇒ cmdout = none
vdu = failed ⇒ cmdout = none

together with formulae like(vdu = on) ∨ (vdu = off ) ∨ (vdu = failed) and(vdu 6= on) ∨ (vdu 6= off )
. . . that assert that variables have unique values. Thetime step subscript is omitted, indicating that all
formulae refer to variables within the same time step.MT for τvdu is as follows, wherenom is an
abbreviation fornominal.

τvdu,t = nom⇒
vdut = off ∧ cmdint = on ⇒ vdut+1 = on
vdut = off ∧ cmdin 6= on ⇒ vdut+1 = off
vdut = on ∧ cmdint = off ⇒ vdut+1 = off
vdut = on ∧ cmdint 6= off ⇒ vdut+1 = on
vdut = failed ⇒ vdut+1 = failed
τvdu,t = fail⇒vdut+1 = failed

The valvesv1 andv2 each have a state variable of domain (open, closed, or stuck), a transition variable
τvi and a dependent variableflowvi of domain (zero, nonzero). The feasible states of thev1 are specified
by the formula below. The feasible states ofv2 are specified similarly.

v1 = open ⇒ flowv1 = nonzero
v1 = closed ⇒ flowv1 = zero
v1 = stuck ⇒ flowv1 = zero

MT for τv1 is shown below.τv2 is asτv1.

τv1,t = nom⇒
v1t = closed ∧ cmdoutt = open ⇒ v1t+1 = open
v1t = closed ∧ cmdoutt 6= open ⇒ v1t+1 = closed
v1t = open ∧ cmdoutt = closed ⇒ v1t+1 = closed
v1t = open ∧ cmdoutt 6= close ⇒ v1t+1 = open
v1t = stuck ⇒ v1t+1 = stuck

τv1,t = stick⇒v1,t+1 = stuck
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3.3 Trajectory Identification
Definition 6 A trajectory for S is a sequence of statess0, s1, . . . sm such that for allt, 0 < t < m, st is
consistent withMΣ and for allt, 0 < t < (m− 1), st∪st+1 is consistent withMT .

Consider the problem of determining the state of a physical process modeled by a transition systemS at
each point in a trajectorys0 . . . sm. The subset of the dependent variablesD whose assignment corresponds
to a measurement from the process will be referred to as the observations,O. We are given an assignment
for the initial state,Σ0. In addition we are given assignments to commandsCt and observationsOt for
all 0 < t < m. The task is to choose assignments toτy,t for all y andt so as to ensure consistency with
MΣ andMT and maximize the likelihood of the trajectory. That is to say, given a starting state, a set of
commands and a set of observations, we must find the most likely sequence of transitions such that each
state is consistent with the state modelMΣ and the transitions are consistent with the transition model
MT . We define trajectory likelihood to be

m∑
t=0

n∑
y=1

Γ(τy,t)

This definition makes the assumption that the likelihood of the assignment to each transition variable is
independent of all others. That is,τy,t is independent ofτx,t, τy,t+i andτy,t−i. This is a common assumption
and has been an adequate approximation in practice. Note that this assumption does not effect the handling
of single failures that manifest themselves at multiple points throughout the system (e.g.,a power failure
causing all lights to go out).

3.4 Infinitesimals
In order to complete the transition system model shown in Example 4, we require the probability of each
τy,t assignment, representing the prior probability of each possible component transition. Experience with
Livingstonesuggests that an order of magnitude probability scale is sufficient for two reasons. First,
the internal behavior of a machine is usually far less stochastic than its interaction with its environment.
There is an expected or nominal behavior that a component will exhibit for a given state and input. Failures
are one or more orders of magnitude less likely. Second, precise estimates for these priors are often either
inaccessible or unknown. In the case of spacecraft, the components may be unique or they may be destined
for a new operating environment. However, the relative plausibility of each failure mode during operation
can be elicited quite easily. In this work, we formalize and capitalize on these characteristics of the priors
by making use of infinitesimals (Goldszmidt & Pearl 1992) to model the relative likelihoods of failures.

An infinitesimal probability is represented by an infinitesimally small constant raised to an exponent
referred to as therank. The rank can be considered the degree of unbelievability. Intuitively, one would
not consider a rank 2 infinitesimal believable unless all rank 0 and rank 1 possibilities had been eliminated.
Composition of infinitesimals has many desirable properties. IfA andB are independent events, then

Rank(AB) = Rank(A) +Rank(B)

Rank(A ∨B) = min(Rank(A), Rank(B))

Thus an outcome that can occur through multiple independent events has ranki if one event has ranki and
the remaining events, even if arbitrarily many, have ranks ofi or more. This property is key. It allows us to
consider only the most likely trajectories leading to a state: if a sequence of events of ranki ends in state
sj, then an arbitrary number of higher rank (i.e. less likely) trajectories leading tosj will not change the
of sj. Similarly, if statesj is reached by a trajectory of ranki, and no trajectory of ranki or less reaches
sk, thensj is more likely thansk. We need not consider the possibility that a vast number of unlikely
trajectories lead tosk and together increase its likelihood above that ofsj. ThusΓ(τy,t = τ∗) returns
the rank of the likelihood of that assignment. We frame our algorithms in terms most likely trajectories,
knowing the direct correspondence to most likely states given the infinitesimal interpretation of the priors.
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3.5 Correspondence to thePOMDPFormulation
The correspondence between a domain specified as aPOMDPand a problemP specified as a transition
system is straightforward. The state set S ofP is the subset of the cross product of the variables ofΣ
that is consistent withMΣ. Similarly, a set of a system-wide actionsA must be formed from the the
factored commandsC. If the transition system is limited to receiving one command per time step, then
the action setA is formed by considering each possible value for each command, and augmenting it with
the idle value for all other commands. If the model-based controller may issue commands in parallel, then
A consists of the consistent cross-product of the command values. The observation setO consists of the
subset of the cross product of the variablesO that is consistent withMΣ. MΣ andMT provide a very
compact encoding for the observation and transition functionsO, T . For a states and an observationo:

O(s, o) = 1 if s ∧ MΣ |= o

O(s, o) = 0 if s ∧ MΣ ∧ o |= ⊥

The question arises as to the value ofO(s, o) if o is neither inconsistent with nor entailed bys ∧ MΣ.
This issue generally arises when using model-based diagnosis algorithms and is not an issue with viewing
the problem as aPOMDPper se. Often the choice is to makeO(s, o) uniform over the consistent values
of O. In other cases, algorithms are constructed to implicitly modelO(s, o) = 1 in the absence of any
other information.O(s, o) is then no longer a probability distribution, as it sums to more than one when
marginalized ons.

The transition functionT is similarly specified.T (s, a, s′) is the probability of the assignment toT i that
transitions the system from s to s’, or 0 if no such consistent assignment exists. Given the independence
assumptions, the probability of an assignment toT i is simply the product of the probabilities of the
individual assignments to each variable. physical device. Recall that the belief state update algorithm for
a POMDPis derived from the Markov property and Bayes’ rule, and is specified by the following formulae:

p(s′, b) =
∑
s∈S

T (s, a, s′)b(s)

b′(s′) :=
O(s′, o)p(s′, b)

Pr(o | a, b)

In the next chapter, we consider a number of belief state generation algorithms for the transition system
formulation. These algorithms at their core use the same belief state update algorithm, but take advantage
of the structure ofMΣ and MT . First, we need not consider any state that is inconsistent with the
observations. That is, we may disregard anys′ such thats′ ∧ MΣ ∧ o |= ⊥, asO(s′, o) = 0 and thus
b′(s′) = 0. If a partial assignment toΣ, c, is such thatc ∧ MΣ ∧ o |= ⊥, then all statess′ ⊃ c can
immediately be eliminated from consideration. The partial assignmentc∪o is referred to as aconflictand
conflict-directedsearches use the conflicts they have discovered to greatly reduce the number of states
they must examine. Second,T (s, a, s′) is the product of the independent probabilities of assignments
to members ofT i. Best-first search techniques take advantage of the compositionality of a trajectory’s
probability to construct assignments toT i so as to consider transitionsT (s, a, s′) in order of probability.
Together, these two observations will allow us to construct algorithms that incrementally generate the
non-zero members of the belief state in order of probability.
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Chapter 4

Trajectory Tracking Algorithms

4.1 TheCBFS-trackTrajectory Tracking Algorithm
The transition-system formulation suggests an intuitive procedure to begin enumerating the belief state
at any point. The transition system is initialized withMΣ and a copy of all variables, representing the
initial state. At time stept, we introduce the structure needed to represent the feasible next states of the
system. We first create a copy of all variables and extendMΣ, conceptually introducing a new copy of the
state constraints where the variables have new time indices, to model the constraints between the variables
within the new time step. We then extendMT , representing the constraints between the variables in the
current and next time steps. Finally, we assignCt andOt+1 according to how the system was commanded
and the observations that resulted.

Example 5 Figure 4.1 illustrates a trajectory-tracking problem of length three for the model of Exam-
ple 2.2. Each box represents an variable. The command iscmdin and the observations areflowv1 and
flowv2. These variables are assigned by the problem, as is the start state. The highlightedτy,t assign-
ments must be chosen. The remaining variables will be constrained based upon these assignments. The
arcs represent constraints fromMT . Constraints fromMΣ are not shown. For allτy,t we will assume
Rank(τy,t = nominal) = 0 andRank(τy,t 6= nominal) = 1.

Trajectories may be enumerated in order by enumerating assignments to allτy,t in order of the sum of
the ranks, then testing for consistency withMT andMΣ. Conflict-directed, best-first search, orCBFS
(Dressler & Struss 1992; de Kleer & Williams 1989; Williams & Nayak 1996) greatly focuses this process
by using conflicts. In this context, a conflict is a partial assignment toT andO that is inconsistent. When
a candidate solution is found to be inconsistent, the conflict is recorded in a database, ConflictDB. No
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Figure 4.1: Evolution of the VDU/valve system
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proc CBFS-track()
problemX = Σ0 ∪ D0

AssignΣ0 to initial state;
loop
X =X ∪ T t ∪ Ct ∪ Σt+1 ∪ Dt+1 to represent new time stept+ 1;
AssignCt andOt+1 according commands and observations received;
Result= n most likely consistent assignments toT returned byCBFS( X, MT ∧MΣ, f )
reportResult;
}
} CBFS-track

Figure 4.2: CBFS-based trajectory tracking algorithm
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Figure 4.3: Two evolutions of the system

further candidates that contain a known conflict are generated.
We begin with a representation of the initial state of the system inX. At each time step, we extend

X with the variables necessary to represent the transition to the next state. We then assignCt andOt+1

according to how the system was commanded and the observations that resulted.CBFSis then used to
enumerate consistent assignments toT in best-first order. The enumeration could be continued untiln
assignments are found, until the rank of the next assignment found decreases, or until some other stopping
criterion computable from the solutions found thus far is met. The process is then repeated for the next
time step.

At each time step, this procedure recomputes from scratch the most likely assignments to the transition
variables given all observations. A trajectoryt that was most likely given only previous observations
might only be consistent with a new observation if it is extended tot′ by a very unlikely assignment to the
most recently added transition variables. SinceCBFS-trackreconsiders all transition assignments at each
time step in best-first order,t′ will only be considered if there are no consistent trajectories of likelihood
betweent andt′. Thus at all time pointsCBFS-trackrecomputes the most likely members of the belief
state given all available commands and observations.

Example 6 Figure 4.3 illustrates the two lowest cost solutions to the above problem would be found
by CBFS. They represent a single failure of rank 1 at time 1 and a double failure of rank 2 at time 2,
respectively.

While this algorithm does compute the most likely states at each time step, it has several significant
drawbacks. First, the memoryless quality that allowsCBFS-trackto avoid overcommiting to seemingly
likely trajectories also forces the algorithm to rediscover past failures at each time step the system is
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proc Livingstone(n)
problemX = Σ0 ∪ D0 ∪ T 0 ∪ C0 ∪ Σ1 ∪ D1

for (i=0;i<n;i=i+1)
Worldsi=initial state;
}
loop

AssignC0 andO1 according to new commands and observations received;
for (i=0;i<n;i=i+1)

Σ0=Worldsi
T 0 = most likely consistent assignment toT 0 returned byCBFS( X, MT ∧MΣ, f )
Worldsi= Σ1 as entailed byΣ0 ∧C0 ∧T 0 ∧MT
}

ReportWorlds
}
} Livingstone

Figure 4.4: Livingstone trajectory tracking algorithm

tracked. Since failures are the exception rather than the rule, we would like a tracking procedure that min-
imizes computation when no failures have occurred, and when failures do occur, scales the computation
required with the inverse of their likelihood. More importantly, the size of theCBFSproblem to be solved
is very large for any given trajectory length and grows unboundedly as the trajectory is extended over time.
CBFS-trackdoes nothing to elminate variables within a time step based upon the structure of the problem,
nor does it attempt to truncate the trajectory representation to maintain a bounded problem size.

4.2 TheLivingstoneAlgorithm

The Livingstone system (Williams & Nayak 1996) usesCBFSto perform both state identification and
control. In this section we will focus on the use ofCBFSfor state identification. While Livingstone was
not developed from exactly the transition system formalism described in this paper, it seeks to solve the
same underlying problem and can be can be described in this framework.

In order to avoid the problem of an every increasing number of variables to assign thatCBFS-track
encounters, Livingstone does not track the most likely states or trajectories given the commands and
observations thus far. It instead approximates the problem of tracking the most likely trajectories given all
available information as a recurring trajectory tracking problem of length one. In this problem, the current
state is assumed to be known or to be contained in a small set, and the task is to identify the most likely
next states given the assignments toCt andOt+1. The true current state is then assumed to be in the set
of currently most likely states, and the problem recurs. TheLivingstonealgorithm solving this problem is
illustrated in Figure 4.4. The parametern specifies how many statesLivingstonewill track. Livingstone
in fact represents a class of algorithms that solve the following problem: Given that the system was in
one ofn statesm time steps ago, determine the most likely state given the intervening commands and
observations, and then use this as an approximation for the most likely portion of the belief state given the
entire trajectory. The currentLivingstoneimplementation setsn = 1 andm = 1 in order to solve problems
such as Figure 1.3 with sub-second response time using the relatively weak CPU’s found on spacecraft
(Bernardet al. 1998).

Livingstonedoes not share the commitmentless property ofCBFS-trackin that it does not reconsider all
transition assignments at each time step. It is still the case that a trajectoryt that was most likely given
only previous observations might only be consistent with a new observation if it is extended tot′ by a very
unlikely assignment to a transition variable.Livingstoneconsiders only the newest transition assignment,
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in essense committing to all previous assignments. There is no choice but to extendt to t′, even if an
assignment of greater likelihood thant′ could be found by reconsidering the assignments represented by
t. ThusLivingstonedoes not track the most likely states of a system. Rather,Livingstonedetermines
then most likely successors, given the next set of commands and observations, of the states that were
the most likely successors given the previous set of commands and observations. Thus each partial belief
state is made up of only descendants of the previous approximation of thenmost likely states, which were
determined using only previous observations. This approach is tractable but fairly vulnerable to ambiguity.
Consider the following examples.

Example 7 Recall the VDU system from Figure 2.2. In the first time step we turn the VDU on. From
that point onward, the VDU may be on or failed. The only way to distinguish between the two is to
attempt to command the valves. Before performing that action, it is much more likely that the VDU is on.
Livingstonetherefore commits to the state wherein the VDU is on. The next state of the system must now
evolve from the state wherein the VDU is on. Suppose we now command the valves to open, and receive
the observations that there is no flow at either valve. All evolutions from the state wherein the VDU is
on and the valves are being commanded open to a state where there is no flow involves all of the valves
moving to the stuck state. This holds whether we have two valves or one hundred. Clearly if we had
considered the entire trajectory of commanding the VDU then commanding the valves, then conditioning
on the multiple flow observations, the most likely trajectory would involve the single failure of the VDU
command.

Example 8 Consider a computer that can fail in two ways: its software can hang, in which case it needs
to be reset, or its hardware can hang, in which case it needs to be power cycled. Software hangs are
significantly more likely than hardware hangs. In either case, the computer fails to respond to keyboard
input. Suppose we receive the observation that the computer is not responding to input. It is ambiguous
as to which failure the computer is experiencing, soLivingstonecommits to the software hang. If a reset
command fails to revive the computer,Livingstonewill search for the most likely transition given that
the computer was experiencing a software hang, and a reset command failed to revive it. Given the prior
probabilities, the most likely failure is a software failure. SinceLivingstonealways considers the most
likely extension to the current trajectory, rather than the globally most likely trajectory, there is never an
opportunity to consider the hardware failure.Livingstonewill thus continually consider a software failure,
reset, and consider a software failure.

4.3 The Conflict Coverage Algorithm

Note that unlikeCBFS-trackor Livingstone, this algorithm should neither rediscover previous failures nor
irrevocably commit to a trajectory or set of trajectories that are most likely given the only the current
observations. If properly constructed, our procedure will have the following properties:

• It tracks all consistent trajectories at the most likely probability level.

• As long as trajectories at the current probability level remain, very little computation is required.

• As soon as it’s no longer consistent to believe the system is in a state at the current probability level, the
procedure finds and begins tracking all trajectories at the next probability level.

• Conflicts discovered at each probability level are accrued, ensuring that future conflict-directed searches
are highly focused and do not reconsider trajectories that have previously been ruled out.

The strengths of efficiently tracking a partial belief state are merged with the flexibility of incrementally
enumerating belief states in theCoverTrackprocedure of Figure 4.5.TSet is a superset of all consistent
trajectories of rankγ, as returned by a previous call toCoverTrack. As described above,extendadds to the
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proc CoverTrack(cmd, obs, TSet, ConflictDB, γ) {
/*Extend the system addingΣt to Σ, T t to T */
extend(Σ,T , cmd);
/*Extend trajectories at currentγ */
AssignT t to nominal, 0 rank assignment.
for trajectory inTSet

trajectory = trajectory∪T t;
/*Check trajectories for consistency, upγ if needed*/
AssignO according toobs received;
Survivors =∅;
loop{

for trajectory inTSet {
conflict=checkConsistency(trajectory);
if (conflict) then

push(conflict,ConflictDB);
else

push(trajectory,survivors);}
if (survivors)then return survivors;
/*Ran out of trajectories. Find more at next rank*/
γ = γ + 1;
TSet=GenerateCover(T ,ConflictDB,γ);
}

Figure 4.5: Conflict Coverage Tracking Procedure

transition system the variables needed to represent the outcomes of the current command. All trajectories
are augmented by the new transition variables, which are assigned nominal transition, and checked for
consistency. Any inconsistent trajectory requires additional failures above rankγ, and is discarded as
relatively implausible. The survivors are a superset of all consistent trajectories of rankγ. If this set is not
empty, it is returned. Otherwise, the most likely trajectory has a rank greater thanγ. TheGenerateCover
algorithm generates all assignments toT of a given rank that cover all known conflicts. A conflict is
covered if at least one of the variables in the conflict is assigned to an assignment that does not appear in
the conflict. Intuitively, we leave theτy,t at their zero rank values, introducing reassignment only to avoid
conflicts, with a total cost ofγ. This is the NP-hardhitting setproblem. The contents ofConflictDB and
γ will determine whether this problem is tractable. Because of the loss of observations at past time points,
GenerateCoverreturns superset of all consistent rankγ trajectories. If at least one trajectory is consistent
with the current observations, it is returned. If not,γ is increased.

4.4 Additional Related Work
A more inclusive synthesis of the literature on belief revision and belief update was performed by Friedman
and Halpern (Friedman & Halpern 1999). It provides an excellent synthesis of the literature in belief
revision and belief update. It describes a general, plausibility-based temporal logic framework that can
be used to describe revision methods such described here. The trajectory tracking method described here
differs from that described by Friedman and Halpern and the other approximations of which the authors
are aware in that it uses history to compensate for not having a sufficient statistic.
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Chapter 5

Decreasing the problem size

While applying CBFS orCBFS-coverto the full transition system exactly enumerates the most likely
trajectories, and thus states, in order, problem size is a significant issue. Letp denote the number of propo-
sitions needed to represent each possible value of each variable inT ∪Σ∪C∪D∪O. These propositions are
constrained by a copy ofMT and MΣ at each time step. Testing consistency of anm-step candidate
trajectory is a consistency problem ofm× p propositions andm× | MT ∪MΣ | clauses. For the Deep
Space 1 model, this ism× 4041 propositions andm× 13, 503 clauses.

Let v be the number of ways to choose a variable fromT and assign a failure value (rank > 0) value to
it. There arem × n variables inT . Let f denote the average number of failure assignments per variable.
Thus,v = m×n×f To find the most likely consistent candidate assuming a single failure, the number of
consistency checks that would have to be performed on this large theory would beO(v) in the worst case:
anyτi,t could be assigned to any failure value in its domain. Finding an arbitrary combination of failures
would require a number of consistency checks exponential inv.

In this chapter, we reduce the structure needed to represent the evolution of the system at a time point
from a complete copy of the system model to a small number of variables and clauses. Intuitively, when a
command is issued to the system, only a small number of components participate in transmitting that com-
mand through the system or transitioning in response to the command. Consider Figure 5.1. The squares
represent state variables, the lines sets of constraints fromMT . As of time 7, the valves, pump and VDU
have not been commanded nor have they interacted with other components by passing a command. If we
did not detect a failure of any of these components, we can represent the possibility that they remained idle
or failed in a localized and unobservable way with a single set of variables and constraints as illustrated.
At time 7 we command the valves on. We require variablesv18 andv28 to represent the new states of the
valves.MT suggestsvdu7, v17 andv27 will interact withv18 andv28. These variables, along with nec-
essary transition variablesτvdu,7, τv1,7 and,τv2,7, are introduced to the system with the appropriate clauses
from MT . For each other variabley, the variable representingy7 is adequate to representy8. Figure 5.2
illustrates this process. In order to derive a well-founded algorithm from these intuitions, we first place
a natural restriction onMT that does not impact correctness. Second we introduce an approximation
involving MΣ that, importantly, does not rule out consistent trajectories. Instead, some trajectories that
are not consistent with past observations may be admitted, with the possibility that future observations
will eliminate them. These problem modifications avoid replication of many variables inΣ andD, as well
as corresponding constraints fromMT andMΣ.

5.1 Restricting MT
We restrictMT as doLivingstoneandBurton(Williams & Nayak 1997): a component moves to a failure
state with equal probability from any state, and except for failures a component that does not receive a
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command idles in its current state.MT is limited to the forms:

(τy,t = τfail) ⇒ yt+1 = yfail
(Cy,t = C∗) ∧ φt ∧ (τy,t = nom) ⇒ yt+1 = y∗

(Cy,t = idle) ∧ (τy,t = nom) ⇒ yt+1 = yt

whereφt is a propositional formula overΣt∪Dt, C
∗ ∈ δ(Cy,t), nom ∈ δ(τy,t) and τfail ∈ δ(τy,t).

Formulae of the first form model failures while formulae of the second form model nominal, commanded
transitions. Formula of the third form are frame axioms that encode our assumption that devices that
do not receive a command remain in their current state. We replaceφt with implicantπt, an equivalent
formula involving onlyΣt. Intuitively φt is a formula involvingD that, givenMΣ and an assignment
to Σ, allows us to infer ifCy,t propagates through a set of components to componenty. To formπt, we
replace each assignment toDt with a set of assignments fromΣt that imply theDt assignment underMΣ.
We expect that for the type of clausesMT contains, growth inπt will be proportional to the length of the
component chain that transmitsCy,t, which ranged from 1 to 5 in (Bernardet al. 1998). Our experience
supports this hypothesis. This growth is offset as non-idle, non-failure clauses take the following form
which is independent ofD.

(Cy,t = C∗) ∧ πt ∧ (τy,t = nom) ⇒ yt+1 = y∗

Given aCy,t which is not idle, in order to determine consistency withMT we now need only introduce
Cy,t, τy,t and those select members ofΣt that appear inπt.

5.2 Eliminating intermediate observations
MΣ remains, and requires introduction of all variables inΣt andDt in order to check consistency against
Ot. We proceed by eliminating all variablesOt for values oft sufficiently far in the past. That is to
say, transition choices are only constrained by consistency between the trajectories they imply and recent
observations. As the system evolves, variables representing older observations and the copies ofMΣ

that constrain them are unneeded. For the portions of the trajectory whereMΣ is not introduced, we
need not introduceD and need only introduce the limited portion ofΣt required byMT . This is of
course an approximation. It is now possible to choose transition assignments that are inconsistent with the
discarded observations, resulting in an “imposter” trajectory. This approximation has several important
features. First, it is a conservative approximation in that no consistent trajectories are eliminated. Second,
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all trajectories are checked against new observations, and impostors are eliminated as soon as they fail to
describe the on-going evolution of the system. Finally if conflicts are recorded inConflictDB, no partial
assignment toT that was discovered to be in conflict with the observations will be reconsidered, even after
observations are discarded. Thus we can only admit an imposter in the case where a transition choice is
in conflict with an observation, but the choice is not considered until after the conflicting observation has
been discarded.

5.3 Selective Model Extension
Based upon these restrictions, the procedureextendintroduces into time stept only the small fraction of
the model involved with the evolution of the system due to the commandCy,t = C∗. The resulting problem
size per time step is proportional to| πt |. This hinges upon Theorem 1. For the purpose of discussion
we will assume that for each time stept there exists only oney for whichCy,t 6= idle. The proofs can be
extended to parallel commanding.

Theorem 1 AssumeCy,t = C∗, C∗ 6= idle, and for allx 6= y, Cx,t = idle. Consider the formula ofMT

(Cy,t = C∗) ∧ πt ∧ (τy,t = nom) ⇒ yy+1 = y∗

For all state variablesxt, x 6= y, if xt /∈ πt, then an equivalent consistency problem is formed by
replacingxt, τx,t and all formulae ofMT involving these variables with a constraint betweenxt−1 and
xt+1.

Intuitively, there are no witnesses to the value ofxt except forxt−1 andxt+1, which can be constrained
directly. If xt is as described, then the only clauses involvingxt are of the form:

(Cx,t−1 = C∗) ∧ φt−1 ∧ (τx,t−1 = nom) ⇒ xt = x∗

(Cx,t−1 = idle) ∧ (τx,t−1 = nom) ⇒ xt = xt−1

(τx,t−1 = τfail) ⇒ xt = xfail

(Cx,t = idle) ∧ (τx,t = nom) ⇒ xt+1 = xt

(τx,t = τfail) ⇒ xt+1 = xfail

The variablext can only impact the consistency of the system via the assignments toτx,t−1 andτx,t. Given
the independence assumptions, assigning failures to both is indistinguishable from and less likely than
assigningτx,t−1 = nom andτx,t to a failure, while assigning a failure to one is equivalent to assigning a
failure to the other. Thus we need only considerτx,t−1 = τx,t = nom andτx,t−1 = nom, τx,t = τfail. In
the nominal case,xt is equivalent toxt+1 and can be eliminated. In the failure case, the assignment toxt
has no impact onxt+1 and can be eliminated. The above formula are rendered equivalent to the following
reduced set:

(Cx,t−1 = C∗) ∧ πt−1 ∧ (τx,t−1 = nom) ⇒ xt+1 = x∗

(Cx,t−1 = idle) ∧ (τx,t−1 = nom) ⇒ xt+1 = xt−1

(τx,t−1 = τfail) ⇒ xt+1 = xfail

In fact, at timet we will know whether or notCx,t−1 = idle, and therefore we need only introduce one
of the first two formulae. Theextend procedure repeatedly applies Theorem 1 to avoid introducing a
variable or constraints forxt when there have been no witnesses toxt and it is possible to constrainxt+1

directly fromxt−1. When a command is introduced, the compiledMT determines what clauses should
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Figure 5.3: Expansion of the VDU Problem to Depthm = 3.

be added to constrain the nominal transition ofyt underCy,t. State variables appearing in the introduced
clauses are added, along with constraints representing their idle or failure transitions. By reducing the
number of variables and clauses introduced at each time step, we reduce the consistency problem involved
in checking a trajectory to a number of variables proportional tom × | πt |. The number of clauses is
proportional tom× (| πt |+ k) wherek is the number of failure values perτy domain.

5.4 Finite Horizons

While selective extension reduces the variables per time step, we still require an unbounded number of
variables over time. We avoid this requirement by setting a finite horizonh steps in the past beyond which
all assignments are summarized by a single assignment. We summarize thel most likely assignments to
all variablesτy,t wheret < (m − h) into l different assignments to a single variableHistory. All other
possible assignments to the initialτvariables are discarded. The horizon point(m− h) is fixed relative to
the present, and therefore only a bounded number of variables are required.

While a finite horizon is most useful whenm has become large, we will illustrate the concept with a
small example. Consider Figure 5.3. The VDU system has been tracked for 3 time steps and the model has
been expanded accordingly. The variablesτvdu,0 throughτvdu,2 andτvi,0 throughτvi,2 have been introduced
to represent choices in the system’s evolution. While tracking the system, we have incrementally generated
the most likely consistent trajectories, represented by the most likely consistent assignments to allT . Let
us consider the case where the most likely trajectories given the observations thus far have been determined
to be a VDU failure att = 0 or a double valve failure att = 1. These are represented by the following
assignments:

{τvdu,0 = Hang, τvdu,1 = nom, τv1,t = nom, τv1,1 = nom, τv2,t = nom, τv2,1 = nom} (5.1)
{τvdu,0 = nom, τvdu,1 = nom, τv1,0 = nom, τv1,2 = Stick, τv2,0 = nom, τv2,2 = Stick} (5.2)

Note that these are the most likely assignments toτy,0 andτy,1 given the observations received in the first
three steps. Note that each assignment entails a set of values forΣ2. For each likely full assignment, we
can introduce a single variable assignment that summarizes the full assignment. Consider Figure 5.4. At
the left of the figure, we have installed assignment 5.1, thus entailing values for the variables att = 2.
At the right, we have eliminated all variables att = 0 andt = 1 and directly constrained the variables
of t = 2 from a new assignment,History = Hang. If we defineΓ(History=Hang) to be equal to
the rank of assignment 5.1, then we have an equivalent representation of this trajectory with far fewer
variables. Similarly, in Figure 5.5 we represent the trajectory of assignment 5.2 with the assignment
History = 2Stick. Once we have summarized a sufficient number of trajectories (here two) with unique
assignments toHistory, the variables att = 0 andt = 1 are discarded.
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We need not truncate the horizon after only two time steps. Imagine that we continue to expand the
representation form steps, conditioning on observations and finding the likely trajectories. Eachm-step
trajectory contains an initial segment that is most likely given a large number of observations received
during time steps 0 throughm. Whenm is sufficiently long to give us confidence that our most likely
initial trajectories include the actual trajectory, or if we simply can only afford to storem steps, we apply
the summarization. We replace each ofl likely assignments toτy,0 throughτy,(m−h) with an assignment
History = choicel that has the same rank. We then entail the equivalent values inΣh. For each value
yh = y∗ that was previously entailed by the nontruncated representation, we introduce a clause of the form
History = choicel⇒yh = y∗.

This summarization may be applied repeatedly. If we expand the summarized representation of Fig-
ure 5.4 and Figure 5.5, we may then summarize thel most likely assignments toHistory and allτy,2 into
a new variableHistory’. We may also summarize the oldest time step or several timesteps leading to
the oldest time step. By repeatedly applying the summarization as we extend the transition system, we
can maintain a fixed size representation. The summary variableHistory restricts choices for the initial
portion of the trajectory to the partial trajectories that appeared most likely after being extended for some
time. Intuitively, we are trading the ability to represent an exponential number of initial trajectories with
increasingly unlikely prior probabilities for a constant problem size and search space. Unlike the previous
approximation, this approximation is not conservative. If the true trajectory involves an assignment to an
old T variable that is not captured in a summarization, it is lost. This case can only arise when a failure too
unlikely to be tracked has occurred, yet it was able to remain consistent with the observations until that
part of the history was truncated.

Figure 5.6 shows a complete representation making use of both the conservative approximation and a
finite horizon. At the right of the figure, new variables are introduced to represent the time steps. Here,
where the trajectory assignments have not yet been conditioned on a large number of variables, we have
a full model of the system. As variables age, they are moved into a conservative approximation. The
assignments here have already been conditioned on observations within their timestep before aging. They
will now be conditioned upon how they effect the evolution of the system and whether they maintain
consistency with incoming observations. Assignments that have both been conditioned on observations
within their timestep and later on how they impact newer observations, and have remained consistent, are
summarized into the history variable. Thus the most space and search is reserved for the portion of the
trajectory of which we are the least certain.
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Chapter 6

Results

We have implemented the transition system representation and the algorithms presented here in a software
system calledL2. L2 is implemented in C++ in a modular form that allows alternative search and con-
sistency procedures to be plugged into the transition system framework. The tests described below were
performed usingCoverTrackfor the search. Consistency was determined via a propositional consistency
checker that used unit propagation and a truth maintenance system to cache inferences. Observations were
kept for one step only. The growth of the model over time was not limited by a horizon. The tests were
run under Windows NT on a 550Mhz Pentium III.

L2 correctly tracks the canonical scenarios known to confoundLivingstone. Consider Example 3. When
the pump is turned on,Livingstonefinds two conflicts in the current mode assignments: valve v1 cannot
be open, and valve v2 cannot be open. It thus fails both valves.L2 finds the following sets of devices that
could not have both transitioned nominally:{VDU, v1}, {VDU,v2}. The lowest cost covering is to fail
the VDU at time step 0. Many more interesting scenarios have been demonstrated. If the VDU is failed
and v1 is commanded open, the trajectory wherein v1 is stuck will be tracked if that is more likely than
a VDU failure. If v2 is later commanded and no flow results, the v1 failure is dropped and the trajectory
where the VDU failed in the past is found. If the VDU is resettable, the trajectory wherein the VDU has
failed in a resettable manner is first tracked when multiple valves fail to open. If the VDU is reset and the
valves again fail to open,L2 may find a trajectory where the valves were stuck all along, one that replaces
the past resettable VDU failure with a permanent failure, or both, depending upon the ranks of the various
failures.

Longer runs on more complex models written byLivingstoneusers rather than the authors were also
performed. The Circuit Breaker,CB, model of 24 electrical components connected in series and parallel
is illustrated in Figure 6.2. This model was tracked in runs of 618 steps. Figure 6.3 illustrates a run wherein
every 16 steps the same set of devices are turned on and turned off, a total of 39 times. On the final cycle,
a device fails. The CPU times for both the nominal and failure steps are below the clock resolution of
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Figure 6.1: CB - Single Failure at Step 598
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Figure 6.2: The Circuit Breaker (CB) Model
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Figure 6.3: CB - Single Failure After 598 Steps

0.016 seconds. Figure 6.4 illustrates a run wherein the device fails on every 16 step cycle and is reset. The
device fails a total of 39 times.

The in-situ propellant production model,ISPP , has 59 components and represents a chemical processor
designed to produce rocket fuel from the Martian atmosphere. The ISPP model was chosen over other,
larger models because itsflow failure requires far more time for diagnosis underLivingstonethan any
other scenario we have encountered. Figure 6.5 illustrates the ISPP hardware, though the components in
the upper right quadrant have not yet been modeled in Livingstone. Figure 6.6 illustrates a 33 step track
of the model, approximating one day’s worth of commands. On the27th step, the flow failure becomes
observable. On steps 32 and 33 simpler, unrelated failures occur. Figure 6.6 illustrates a second tracking
run of the same model. Note that the time axis is logarithmic. On step 15 the flow failure is introduced.
Repair actions are taken and the failure is immediately reintroduced, until a total of four identical failures
have occurred. Additional runs were made on both models. Our results suggest the following.

• Model growth per time step is small.ISPP begins at 2933 clauses and grows by an average of 36 clauses
per time step. CB begins at 1126 clauses and grows by an average of 44 clauses per time step.Tracking
time steps where no failure occurs takes a very small amount of CPU time.Note that in Figure 6.3 and
Figure 6.6 the steps before the first failure occurs require a negligible amount of CPU time. The nominal
steps after the failure in Figure 6.6 take slightly more time, as 8 trajectories are being tracked, but the
cost is still negligible.

• Keeping a history does not induce an unreasonable cost when diagnosing a single failure.When the
nominal trajectory is ruled out we have a single, long conflict andγ = 1, leading to a simple coverage
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problem. The CPU time for a single CB failure scenario is below clock resolution whether 15 or nearly
600 nominal steps, as in Figure 6.3, precede the failure. In Figure 6.7,L2 finds the eight trajectories that
explain the failure that became observable on step 27 in 0.19 seconds.

• Because of the accumulation of conflicts, tracking the system throughk failures spread over time can
be an easier problem than diagnosing a single failure of cardinalityk. Consider the run of Figure 6.6.
On step 27, the flow failure occurs, causing the large spike in CPU time. Eight trajectories result and
are tracked until step 32. On step 32, a simpler, unrelated failure occurs, and none of the 8 trajectories
is consistent when extended by the nominal transition. Note thatL2 must now re-diagnose the entire
history of the system including the flow failure. It does so in just 0.08 seconds, less than half of the time
required to diagnose the flow failure alone. The key to this behavior is the conflicts. On step 27, the
nominal trajectory is ruled out andConflictDB contains a single conflict.GenerateCoverreturns 28
candidate trajectories, 20 of which are ruled out, adding another 15 candidates toConflictDB. Calling
GenerateCoverwith the sameγ on these conflicts almost immediately returns just the 8 consistent
candidates. On step 32, the 8 diagnoses are ruled out by conflicts resulting from the simple failure.
Since the conflicts from the simple failure involve none of the variables from the flow failure conflicts,
the problem decomposes into two subproblems, one of which has previously been solved and memoized
by the conflicts.

• Unfortunately, trackingk related failures over time can also be as computationally intensive as diag-
nosing a cardinalityk failure. Figure 6.7 illustrates a sequence of failures where the conflict coverage
problem does not decompose. At each time peak, the flow failure has occurred again. The conflicts
generated by the fourth failure involve exactly the devices involved in the first three failures. As a result,
the time required to solve the hitting set problem and the number of inconsistent trajectories considered
rises dramatically.

• At the fourth failure, 2694 candidates are returned in 174 seconds. An additional 33 seconds are spent
determining all but 8 of them are inconsistent. Figure 6.4 clearly shows the exponential growth of
tracking time as the number of failures involving the same device grows.

36



Chapter 7

Related Work in Acting Under Uncertainty

The preceding chapters explore methods for determining a partial distribution over the possible state an
apparatus occupies. Given that the control system no longer knows with certainty what state the apparatus
occupies, the question arises of how does one choose actions? An action that achieves some desirable goal
when the apparatus is in one possible state may be ineffective or precipitate a disaster if the system if the
apparatus is in fact in another state. The traditional method for modeling this state of affairs is to create
a reward that expresses the relative desirability of taking an action in a state. Igniting an engine in a state
where thrust is desired is assigned a positive reward. Igniting an engine in a state where there is a fuel
leak is assigned a large negative reward. Given the reward assignments for each action in each state and a
probability distribution over the states, we can use notions from decision theory to determine the utility of
each state and choose an action.

Recall that our discrete control problem can be modeled as a partially observable Markov decision
process, orPOMDP. A policy is a mapping from belief states to actions. Given any belief state, the policy
specifies an action to be taken. To solve aPOMDPis to create a policy that for any distribution over the
state space returns the optimal action to take in order to maximize the expected reward given the partial
observability. The details of finding an exact solution to aPOMDPare beyond the scope of this proposal
but a number of algorithms for finding such a solution exist (Sondik 1971), (Cheng 1988), (Littman,
Cassandra, & Kaelbling 1995). Unfortunately, even the most efficient of these would do well to solve
problems with 10 states and 10 observations.

Fortunately, a wide variety of technique for more limited versions of POMDP solutions have been de-
veloped. These techniques typically involve reducing the problem complexity by making simplifying
assumption about uncertainty (e.g.,assuming the world is observable or has deterministic actions), gener-
ating something other than a policy that maximizes expected reward from any state (e.g.,assuming there is
a single goal state that must be reached) or some combination. Figure 7.1 shows one possible hierarchy of
the methods, roughly categorized by how the techniques deal with uncertainty. TheMDP technique gener-
ates a full policy, applicable in any state, but assumes the current state is always observable. Conformant
planning techniques assume the initial state is unobservable but contained within a small set, and generate
a plan that succeeds (possibly with some probability) regardless of the initial state. Contingent planning
techniques generate a branching plan whose branches are chosen at execution time based upon the results
of observations. Belief replanning makes an initial assumption about the start state or initial distribution
and creates a deterministic plan appropriate to that assumption. If at any point the belief state predicted by
simulating the deterministic plan diverges significantly from the belief state resulting from execution of
the plan, either the initial assumption was incorrect or the plan did not behave deterministically. In either
case, a new plan is generated from the divergent belief state. The remainder of this chapter describes these
methods and their applicability to the problem at hand.
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7.1 Policy-based Solutions

7.1.1 MDP-based Heuristics

A POMDPwith deterministic observations (i.e., each observation reveals the true state of the apparatus)
is a Markov decision process, orMDP . Given complete observability, the exact solution to anMDP is
a policy that specifies the optimal action to take given that the outcome of an action is non-deterministic,
but will be known once the action is taken. Such a policy can be obtained quickly even for relatively large
models.

In MDP -basedPOMDPalgorithms, a suboptimal solution to thePOMDPis developed from the optimal
solution to the correspondingMDP via the MLS , or most likely stateassumption. Given the belief state,
this heuristic finds the world state with the highest probability. It then uses theMDP policy to select and
execute the action that would be optimal if the current state and the state resulting from the action were
directly observable. This is of course a heuristic, since the state that is most likely given only the current
observations may not be the true state, and the action that is optimal given complete knowledge of the
state (e.g.,whether or not a fuel valve is leaking) may not be optimal given only a distribution over the
possible states.

The strength of theMDP heuristic is that it takes into account the uncertainty in the results of actions,
thus penalizing actions that might take the system into or near an undesirable state. This strength is
undermined by the infinitesimal interpretation of the transition system: the nominal transitions dominate
to the extent that non-deterministic outcomes of the action are only considered when conditioning on
observations forces it. In addition, as failures are modeled as occurring from any state, it’s not clear
how one would act in order to avoid precipitating failure. Thus the main strength of theMDP heuristic,
the ability to take into account possible unexpected outcomes of an action before there is an evidence to
suggest they may have occurred, seems wasted in this framework. Perhaps more importantly, this heuristic
requires solution of the underlyingMDP . While an MDP with tens of thousands of states can be solved,
the state space of the models we seek to operate on precludes explicit solution of the correspondingMDP

.

7.2 Maximizing Expected Reward

Even if we cannot compute a full policy, we might still take advantage of the general utility model of an
MDP by attempting to find a partial policy or plan that attempts to recommend the actions that maximize
the expected reward over some horizon. This has a few complications. If we assume the only information
we have about the prior probability of the outcome of an action is an infinitesimal rank, computing the
expected reward of an action is not trivial. One simply cannot multiply a rank and a reward. One approach
is to compare expected rewards in a rank-wise, lazy fashion without ever explicitly computing an expected
reward value. That is, if we wish to compare the expected reward of planp1 and planp2, we first compute
the reward that would be received in the rank 0 (no failure) execution of the plans. If one clearly dominates,
we stop. If one does not dominate, we compute the reward that would be received over all executions of
the plan of the next rank. This lexicographical comparison of plans allows lazy evaluation, and avoids the
need to take the product of probabilities (specified as ranks) and costs (specified as real numbers).

Unfortunately, this approach does not have the needed expressiveness. Consider again the problem of
the computer that can be frozen due to a software hang or a hardware hang. A reset fixes the software
hang, does nothing to a hardware hang, and never causes additional failures. Power cycling the hardware
fixes both the software and hardware hangs, but sometimes destroys the hardware. Looking only at the
rank 0 outcomes, power cycling dominates. If our initial distribution contains both types of failures, power
cycling repairs both while resetting repairs only one. However, power cycling in this situation is often not
the preferred action. A reset is often chosen because while in one case it does nothing, in both cases it
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does no harm. Choosing between these actions requires some analog of summing the expected reward of
the differently ranked outcomes of each plan in order to determine which has the highest total expected
reward. In addition, it’s not clear how to compute the expected reward for a sequence of actions. A plan
might fail at any point. After this failure, the remainder of the plan might have a considerably different
effect than was planned. This must be accounted for in computing the expected reward for execution of
the plan. Note that we are monitoring execution of the plan using our state estimation techniques and will
stop execution as soon as it is noticed that the plan execution has gone wrong. Thus the length of the
remaining plan that is actually executed, and will actually result in reward, is not clear.

We could attempt to address these issues by determining an algebra for combining rank likelihoods and
costs, perhaps by using rank costs, and by using the worst case reward or reward up to the first failure to
approximate the reward received for a plan execution. However, we have chosen to initially sidestep these
issues until we have explored solutions that avoid them.

7.3 Belief Replanning

Belief replanning occurs at the opposite end of the uncertainty spectrum as an optimal policy. This tech-
nique creates a deterministic plan from the current state to the goal state, and replans when it’s clear
something has not gone as expected. The algorithm starts by assuming it is in the most likely world state
and that a deterministic idealization of the action model holds. In this idealization, the most likely out-
come of an action in a state is assumed to be the outcome that always results from performing that action
in that state. Given these assumptions, the algorithm generates a deterministic plan from the most likely
state to the goal state along the appropriate deterministic actions. In addition, it generates a sequence of
predicted world states that will be traversed if this deterministic trajectory is followed. The system then
embarks upon this plan, updating its belief state and checking, at each step, that the most likely world state
(according to the belief distribution) is equal to the predicted state. If it is not, the cycle begins again by
planning from the current most likely state.

This family of approximations has been used in mobile robots (e.g.,Dervish (Nourbakhsh, Powers,
& Birchfield 1995)) and is also very similar to the methods developed independently in the model-based
diagnosis world and embodied in the Livingstone and Burton systems (Williams & Nayak 1996).

Since belief replanning plans using a simplified deterministic action model, it will not take into account
less likely outcomes of an action that result in negative reward or disaster as theMDP -based solution
will. Given the strong bias of our models to the nominal outcome of actions, this may be one reasonable
approach to avoid solving the underlyingMDP .

The following sections detail a number of variations.
In fact, the next two subsections describe specializations of belief replanning that we have used in

practice to perform action-selection on very large transition system problems.

7.3.1 Livingstone

With the MLS assumption and the assumption of deterministic actions, belief replanning is significantly
simpler than solving aPOMDP, and has been successfully applied in realistically-sized robot navigation
domains (Nourbakhsh, Powers, & Birchfield 1995), (Cassandra, Kaelbling, & Kurien 1996). In the
robot domain, the action model typically models the topology of a physical space. The action model is a
matrix where T(s,a,s’) non-zero if s’ is reachable from s by performing action a. When the action model is
assumed to be deterministic, the planning problem is reduced to the polynomial time problem of finding the
shortest path between nodes in a graph (Dijkstra 1959). In the transition system representation and most
traditional planning domains, the state space is too large to allow us to explicitly express the transition
model. T(s,a,s’) is therefore implicitly encoded in a logical action model that includes a propositional
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precondition that must be entailed in order for an action to be enabled. In addition, the goal state is not
specified directly but rather constrained by a propositional formula it must entail. Thus, even if the belief
replanning assumptions are made, action selection remains full STRIPS-style planning.

The reconfiguration algorithm used in Livingstone (Williams & Nayak 1996) is a variation on belief
replanning designed to work with a implicit, propositional specifications of T(s,a,s’) and the goal state,
and to provide sub-second response times. Livingstone avoids solving an unrestricted STRIPS planning
problem and draws upon existing techniques in model-based diagnosis by assuming that the plan required
to reach a goal state consists of a single set of actions performed in parallel. Livingstone searches for a set
of actions for the components of the apparatus that, when executed in parallel and assuming determinism,
move the system from the current most likely state to a state that entails the goal specification. Considering
a only single step greatly simplifies the planning problem, allowing issues such as re-ordering steps to
avoid clobbering of preconditions to be ignored.

Livingstone casts the one-step planning problem as search for an assignment to the modes of the com-
ponents of the system that entails the goal specification. Livingstone performs this search using the same
conflict directed, best first search over mode assignments used in diagnosis. During diagnosis, Living-
stone searches for an assignment to the mode variables that is consistent with the observations, guided
by conflicts between observations and the predictions entailed by the current mode assignment. Mode
assignments that support entailment of a prediction that conflicts with an observation are candidates for
reassignment to a failure value.

During action selection, Livingstone searches for an assignment to the mode variables that entails the
goal specification, guided by conflicts between the desired state and predictions entailed by the current
mode assignment. Mode assignments that support a prediction that is in conflict with the desired state
must be reassigned. A mode is reassigned by finding an action that moves the mode from the current to
a new assignment. Sets of reassignments to the conflicting modes are considered in best first order, using
as a metric the sum of the costs of the actions required to make the reassignment. The search terminates
when a mode assignments is found that entails the goal specification. The set of actions used to reassign
the modes to the entailing assignment is returned as a one-step parallel plan.

This technique has been shown to very rapidly find single-step plans for complex domains and has used
in the control of a spacecraft (Bernardet al. 1998) and in several other applications (Kurien, Nayak, &
Williams 1998). It’s limiting weakness is that not every goal state can be reached using a single step plan.
For example, the simple act of power cycling a device in the hope of resetting it cannot be represented.
In practice, critical sequences of sub-actions can be made into a macro action that is added to the model.
For example, a ıpower-cycle action that reassigns a component’s mode from ıhung to ıon was used as
a workaround in the spacecraft application. The system executing the actions was then made responsible
for translating the ıpower-cycle action into a sequence of turning the device off then on.

Unfortunately, this workaround can add a great deal of complexity to whatever system is executing
the plan returned by Livingstone, as it must decode each macro action into a sequence and potentially
interleave the sequences resulting from multiple parallel macro actions without producing any negative
interactions.

7.3.2 Burton

The Burton model-based reactive planner (Williams & Nayak 1997) is a further refinement of belief re-
planning that complements Livingstone. It eliminates the need for macro actions by eliminating the single
step assumption. Burton finds a sequential plan that leads from the current most likely state to a goal state.
In order to generate a candidate goal state from the goal specification, Burton uses Livingstone’s recovery
algorithm, described above, to find a set of goal mode reassignments that entail the goal specification.
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Burton then finds a plan that moves the current modes to the goal mode assignment. By leveraging a set of
simplifying assumptions and preprocessing the system model, Burton can return the first step in this plan
in average case constant time. Burton is therefore used by generating the first step of the plan, executing
it, then replanning from the new belief state. Note that while we generate and execute the plan one step at
a time to maximize response time and robustness to unexpected events, each step is guaranteed to be the
first step in a sequential plan to the goal state.

To achieve it’s performance, Burton assumes it’s possible to avoid negative interactions between mode
reassignments. That is to say, given a set of modes that need to be reassigned, one can perform the actions
to reassign a mode variable without undoing any reassignments that have been done, and without making
any remaining reassignments impossible. For example, in order to change the mode of the valve we must
change the mode of the valve driver. However, once we achieve the desired mode of the valve, the valve is
unaffected by further changes in the valve driver’s mode. Thus we plan reassignment of the valve before
final reassignment of the valve driver to its goal assignment. This assumption is not unreasonable for many
engineered devices assembled from independent components. It requires that

• There are no irreversible actions

• Every device is independently commandable.

• Every device has an idle command (or the transmission of no command) that causes the device to persist
in its current mode

• Device is tree structured in terms of commanding

Note that the final requirement does not preclude the existence of continuous feedback loops within
components of the device. However, issuing a mode-changing command to a component cannot result in
a second command being issued to the component via a command feedback loop.

If these requirements are met there will exist a topological ordering of the mode variables such that if
componentC1 appears beforeC2 in the ordering, the plan necessary to putC2 in its desired mode is not
dependent upon nor does it change the mode ofC1.

Definition 7 A componentC2 is said to beupstreamof componentC1 if the transition clauses that model
the evolution the state ofC1 involveC2 ( e.g.,a communication bus needs to be on in order to command
C2). C2 must appear afterC1 in the topological ordering.

The topological ordering and these restrictions ensure thatC2 is reconfigured before all of its upstream
devices. We are therefore free to command the upstream devices as needed. When the upstream devices are
later moved to their goal configurations,C2 can be held in its goal configuration. Thus any reconfiguration
problem is reduced to a collection of small reconfigurations of a single device and its upstream devices.
In order to further decrease response time, Burton does not generate a complete plan to reconfigure the
system, but rather returns the first step in a plan from the current state. Note that Burton is guaranteed
to return the correct first step in a multi-step plan leading from the currentMLS to the goal state, is as
opposed to Livingstone, which returns a single step plan. If finding the first step to a plan can be made
fast enough, Burton’s approach is more efficient than standard belief replanning, in that it never generates
a plan sequence that is thrown away because of non-determinism.

Burton achieves this speed by compiling a policy off-line that for any current and desired mode of com-
ponentC, specifies the action to perform. This policy is only applicable when the upstream components
are in the appropriate modes to allowC to be commanded. If the upstream devices are in the correct
modes, the policy is used to read out the appropriate action to reconfigureC. If the upstream components
are not in the correct modes, their upstream components and policies are similarly checked to read out the
action that must be taken before reconfiguringC. In either case what is returned is the first step in the plan
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to reconfigureC. The depth of the chain which can be followed before looking up an action is bounded
by the topology of the device, leading to an average-case constant time reactive planning algorithm.

7.4 Inapplicability of MLS-based approaches
There are a number of features of our domain that limit the utility of theMLS -based approaches. Most
fundamentally, there is quite often no most likely state. The infinitesimal interpretation of the transition
priors, or any other order of magnitude probability specification that is likely to be required in practice,
often results in several states being assigned the same relative probability. Doing something more intelli-
gent than choosing a state at random requires acknowledging the initial distribution over the start states.
This in turn requires acknowledging that when the initial state is not known with certainty and an action is
taken, the resulting state will not be known with certainty. Thus the very question of finding a sequence of
actions that reaches the goal state (with implicitly certainty) must be revised. Second, we often care about
the path taken to the goal configuration. For simplicity, belief replanning, Livingstone and Burton all as-
sume that the agent is rewarded for entering the goal state and receives no reward, positive or negative, in
any other state. Thus there is no way to model the undesirability of action sequences that take the system
through undesirable or dangerous states on the way to reaching the goal state.
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Chapter 8

Safe Planning

As discussed in the previous chapter, a simple STRIPS-like framing of the planning problem, with a single
start state, a goal state, and no costs related to performance of actions, is inadequate for capturing the type
of capabilities we would like our reactive planner to have. The fullPOMDPproblem is certainly general
enough, but is intractable. We require a specification of the planning problem that is more general that
the STRIPS framing, but remains tractable. Intuitively, given a small set of possible current states, we
would like a sequence of actions that reaches a state that meets some goal specification. Of course, since
we do not know which of the current states is the true state, and some may include irrecoverable failures,
we cannot guarantee that a single plan will reach the goal from all possible current states. We would
therefore settle for a plan that reaches a goal state from at least one of the current states. Of course, there
may be many such plans, and not just any of them will do. A plan that when reaches the goal state from
one possible current state and does nothing in all other states is preferable to a plan that reaches the goal
state from one possible current state and reaches a highly undesirable state from possible current states.
Similarly, a plan that reaches the goal while avoiding passing through any undesirable states is preferred
to one that enters undesirable states before reaching the goal. We will capture the notion of undesirable
states through the use of a set of safety constraints that mark a subset of the state space as unsafe. We
will then define several varying notions of what it means for plan to be safe. Similarly, we do not want
a plan that needlessly uses resources or reduces our flexibility in reaching future goals. We will capture
these notions by giving a cost to taking actions and marking a subset of the actions that reduce our future
flexibility as irreversible. From these we will define a notion of the optimality of a safe plan. This chapter
only describes the formulation of the safe planning problem. Development of algorithms for the problem
are future work.

8.1 Compilation of the Transition System for Planning

In order to clarify the planning problem and algorithms for addressing it, we would like to simplify our
transition system representation to only those components required for planning. This would include a set
of state variables, actions on those variables, safety constraints on those variables, and a goal predicate
upon those variables. Specifically, we would like to eliminate the dependent variables and the state con-
straints from the model. This will allow us to characterize the problem as an extension to STRIPS-style
planning.

8.1.1 Eliminating the State Model,MΣ andD

A transition system is a tuple〈Σ, T ,D, C, MΣ, MT ,Γ〉, whereΣ represents the controllable state of the
system,T andΓ represent non-deterministic choices over actions,D andMΣ determine if an assignment
to Σ is consistent with observations, andMT models the transition of the value ofΣ from one time

44



point to the next. We first eliminateMΣ. The purpose ofMΣ is to determine whether an assignment
to Σ is consistent with observations1. In the planning problem, there will be no observations.MΣ is
therefore trivially consistent regardless of the assignment toΣ and can therefore be eliminated. Recall that
MT can be compiled so that all references toD are eliminated, yielding a formula onC, Σ andT . This
eliminates all remaining references to the variables ofD, which is in turn eliminated.

8.1.2 Eliminating T and Translating MT to STRIPS Actions

During planning, we will only be considering the most likely outcome of each action. We may therefore
discard any constraint fromMT that mentions any but the most likely assignment to each variableτy,t.
Each remaining constraint is of the form

Cy,t = c′ ∧ πt ∧ (τy,t = nominal) ⇒ yt+1 = y′′

whereπt is a formula involving onlyΣt. As we are only considering the case where each (τy,t=nominal),
we may we may eliminateT andΓ. We may also splitπt into a form that makes explicit the dependence
uponyt and some other state variablesxt throughzt.

Cy,t = C∗ ∧ yt = y′ ∧ xt = x′ . . . ∧ zt = z′ ⇒ yt+1 = y′′

For each such formula remaining inMT , we can introduce an equivalent STRIPS-style action A with
the preconditions{Cy = C∗, y = y′, x = x′ . . . z = z′} and effects{add y=y”, delete y=y’}. (Note this
translation assumes the precondition is a conjunction, though a formulation with any WFF is similar. This
needs to be addressed.)

8.2 Formulating the Safe Planning Problem
Our basic problem structure is a disjunctive start state with a goal predicate and safety constraints. Intu-
itively, we would like, when possible, the system to reach the goal while entering only states that satisfy
all safety constraints, but will accept plans that do not contain actions that violate a constraint that was not
violated in the previous state. We might also like to formulate the problem such that we are allowed to
temporarily violate some constraints to reach the goal, but initial states that do not reach the goal may not
become worse. We describe each of these planning variations, beginning with some supporting definitions.

• Let S′ be a uniform distribution over a set of possible initial states. Each member ofS′ is an assignment
to Σ.

• LetA be the set of possible actions, andC(a) be the cost of taking an action.

• LetGoal(s) be a predicate on the assignments toΣ that determines if assignment s is a goal state. Note
that we may specify a goal as a predicate onΣ∪D then useMΣ and prime implicate generation to yield
a predicate onΣ.

• LetQ be a set of predicates{q0 . . . qn} upon assignments toΣ. Q is the set of safety constraints. Note
that we may specify a safety predicate onΣ∪D then useMΣ and prime implicate generation to yield a
predicate onΣ.

Definition 8 Given a start states, a planp is safewith respect tos if execution ofp does not violate any
safety constraints not violated bys. That is,∀qi ∈ Q if sj precedessk in the deterministic execution ofp
ons, thenqi(sj)⇒qi(sk). Let this be denoted bySafep(s).

Definition 9 Given a planp and an initial states, we define the predicateGoalp(s) to be true if determin-
istic execution ofp starting in states results in a state that satisfiesGoal(s).

1We disallow the case whereMΣ contains constraints directly between members ofΣwithout includingD.
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Definition 10 Given a start setS′, a planp is amaximally safe plan if p is safe for all start states. That
is,∀s∈ S′ Safep(s).

Definition 11 Given a start setS′, a planp is asingle goal safe planif the plan takes at least one state to
the goal state, and the plan executes safely from all other states. That is,∃s∈ S′ (Goalp(s)∧∀s′∈ S′ s′ 6=
s⇒Safep(s)).

Definition 12 Given a start setS′, a planp is agoal safe planif p either takes a state to a goal, or executes
in a safe way from that state. That is,∀s∈ S′ Goalp(s)∨Safep(s).

Definition 13 For the purposes of simplifying the text, we define asafe planas a plan that is maximally
safe, single goal safe or goal safe.

Definition 14 The planning problem: Given a start state setS′, find the least-cost maximally safe{goal
safe, single goal safe} plan.

8.2.1 Discussion

Some interesting things to note:

• Conformant planning is a special case of goal safe planning wherein all start states reach the goal.

• The only uncertainty introduced is in the start state. This frees us from having to compute the expected
utility of the execution of a plan.

• Riskier actions are penalized directly by an action cost, rather than computing the expected outcomes of
the risky action and using the cost of the outcome to compute expected utility.

• The problem as stated is more sensitive to outcomes along the expected execution than to action cost.
That is, no plan may be unsafe. Among the remaining plans, we optimize cost.

• This is basically an improvement to belief replanning. In belief replanning you have some belief about
what states you might be in. You arbitrarily pick a states among the most likely, and plan as if you
were in that state. Executing the plan will bring information about the true state. If at some points is no
longer among the most likely, you replan from one of the most likely states. The basic improvement is
rather than planning from one state and ignoring the rest, we are a bit more conservative. We plan from
one state ensuring that the effects that might occur in other possible starts states are safe.

8.3 Extensions to Safe Planning

8.3.1 An Extension that Distinguishes Irreversible Actions

This planner is aimed at rapidly finding short plans to reconfigure a system. It is not attempting to solve
planning problems that involve long-term projection over time. Still, we would like to avoid taking an
action during the current planning session that unnecessarily reduces our options for responding to future
reconfiguration requests. For example, spacecraft typically employ pyrotechnic devices that can be used
once for tasks such as opening the valves to a backup engine. We would like to ensure we use such
irreversible action only when warranted and only after proper deliberation.2

Definition 15 An action is irreversible if when executed in states, there exists no other action or sequence
of actions that returns the system to states.

LetA∇ be the set of actions that are irreversible.

2Issue: Dave Smith suggested we start with the more general notion of damaging actions, then specialize to irreversible actions, which
have algorithmic implications. How do we distinguish the two, in that if damage is not irreversible, we can just undo it.
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We require that∀ai, aj ∈ A, ai ∈ A∇aj /∈ A∇⇒C(ai)� C(aj).

That is, the cost of irreversible actions dominate the cost of reversible actions. The cost of any plan with
one or more irreversible actions is greater than any plan without any irreversible actions. This has some
potentially interesting ramifications.

• We require that irreversible actions dominate the cost. As a result, we can divide the cost of a plan into
an irreversible part and a reversible part.

• We can potentially, off-line, devise a policy that tells us when an irreversible action must be taken based
on features of the current state and the goal.

• If no irreversible actions are required, we can solve the problem as a fast reversible-action-only planning
problem and know we have the lowest cost plan.

• If a reversible action is required, we can use the off-line policy to take the action with confidence without
requiring a large amount of computation. Ideally we’d like to perform the irreversible actions (and
whatever reversible setup actions are required) and then be left with a completely reversible problem.
We can potentially solve that quickly.

8.3.2 Urgent States

Now we have a planning problem that includes multiple start states, costs on actions, and irreversible
actions, which were the top items on our wish list. It requires that we find a plan that reaches the goal from
some arbitrary states from S′, and makes the remaining states no worse. In executing this plan, the idea
is we either make progress toward the goal froms, or we make progress toward discovering thats was
not the true state. In a practical sense, we can improve it by choosing more carefully fromS′. We must
choose somesi to plan from and the remainingsj will potentially found to be true as a side effect. Note
that there may be some urgent states in the distribution, which if they were the actual state, we wouldn’t
want to discover that serendipitously some time in the future. Instead, we’d want to plan as if that was the
state, preferring the possibility that we later discover the true state was a less urgent state. To accomplish
this, we add an urgency measure.

• Let U(s) denote the urgency of state s.

Definition 16 The urgent planning problem: Given a start state setS′, find the least-cost safe planP
such that∃s ∈ S′ for whichP executed ons results in a state that satisfies the goal predicate, and if there
∃sj ∈ S′ for which there is also an safe plan to the goal,U(s)≥ U(sj).

If we cannot reach the goal from the most urgent state, we might take the next most urgent state, as above,
or we might want to eliminate the urgency. Below we give two possible problem statements.

• Let sf denote the system safe state.

Definition 17 The urgent planning problem with a safe state:Given a start state setS′, find the least-
cost safe planP such that∃s ∈ S′ for which P executed ons results in a state that satisfies the goal
predicate or results in the safe state if there is no path to the goal. It must be the case that if there∃sj ∈ S′
for which there is also an safe plan to the goal or a safe state,U(s)≥ U(sj).

Definition 18 The urgency reduction problem: Given a start state setS′, find the least-cost safe planP
such that∃s ∈ S′ for which P executed ons results in a statesk that satisfies the goal predicate or for
whichU(sk) is less than some threshold. It must be the case that if there∃sj ∈ S′ for which there is also
an safe plan that reaches the goal or reduces urgency,U(s)≥ U(sj).
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8.4 Potential Techniques for Safe Planning

Our task is to solve the safe planning problem: given a set of possible initial states, find a safe plan. Note
that this is a generalization of conformant planning, in that we may adjust the number of initial states that
must reach the goal from one to all (the conformant case) by modifying the definition of safety. There are
two approaches to generating a safe plan, which we will call safe generation and repair. In safe generation
one conceptually plans in all possible current states at once. One chooses an action that does not violate
any safety constraints no matter which of the possible initial states is the actual initial state. That action,
when executed on the possible initial states, results in a set of possible second states. One must then choose
an action that does not violate any safety constraints regardless of which of the possible second states is
the true second state. This process repeats until one or more goal states are in the set of possible current
states. With repair, one uses a traditional planning system to generate a plan that reaches the goal state
from one of the possible initial states. There is of course no guarantee that this plan is safe when executed
from any of the other possible states, so its effects from those states must be simulated. If a violation of
a safety constraint is found, the violation is analyzed to find a ”repaired” plan that does not exhibit the
violation. The repaired plan is then simulated and any additional constraint violations are repaired.

While safe generation or repair may lead to an efficient algorithm for safe planning, we have chosen to
begin experiments with a repair-based approach. We begin with the Blackbox planner (Kautz & Selman
1999), a fast planner that compiles a traditional planning problem of reaching a goal from a single start
state into a propositional satisfiability problem. We first trivially extend Blackbox to generate a plan to
reach the goal from a start state S it chooses from a set of possible initial states. If we could ensure
the resulting plan did not violate any safety constraints if it were executed in a state other than S, we
would have a method for generating goal safe plans. The approach for achieving this is as follows: given
the initial plan from our extended Blackbox, we use the existing inference machinery of L2 to simulate
execution of the plan from each initial state. If a safety constraint is violated, the L2 inference machinery
can return the subset of the plan that is causing the constraint to be unsatisfied. This subset is then inserted
as a nogood into the propositional representation of the planning problem that Blackbox has generated.
That is to say, Blackbox has cast the planning problem as a propositional satisfiability problem, and we
have added constraints to the problem that rule out a class of solutions as unsafe. We then re-invoke
Blackbox’s satisfiability engine to find a new plan that satisfies the original planning problem and does
not include any plan fragments that are known to be nogoods. The process of considering a solution and
using the resulting nogoods to limit the space of feasible solutions is analogous to the conflict-directed
search methods that provide a massive speed up in conflict-based diagnosis. Whether or not the proposed
technique rapidly focuses the safe planning problem on a feasible solution in the same manner will to a
great extent depend upon the nature of the search space and the generality of the conflicts found. That is to
say, if a conflict only rules out the single plan that generated it, there is no speed up. If a conflict rules out
an exponential number of similar solutions from consideration, as it can in diagnosis, then the speed up
can be immense. We have the infrastructure in place to perform conflict-based repair of plans generated
by Blackbox and have run simple experiments. The task of investigating what types of conflicts the L2
engine should return in order to quickly focus the planning process remains.

If empirical results suggest that the conflicts we are able to generate are not sufficiently focusing the
satisfiability problem to produce a repaired plan, we will investigate techniques for safe generation. In
safe generation, we must consider all possible current states when determining the safety of an action, in
effect reasoning across multiple possible worlds. This is similar in spirit to techniques from conformant
planning, wherein one must reason across multiple worlds in order to ensure all possible initial states reach
the goal. The multiple-world graphplan structures used in Conformant Graphplan (Smith & Weld 1998)
and the binary decision tree representations of the set of possible executions used in conformant planning
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via model checking (Cimatti & Roveri 1999) are two possible optimizations of the safe planning process
inspired by the conformant planning literature. In this case, we will leverage the special features of our
domain (e.g., the fact that we are simply preserving safety rather than goal achievement across the multiple
worlds) in order to scale these techniques to the problem sizes we face.
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Chapter 9

Potential Areas for Future Work

In the preceding chapters, we introduced a problem formulation and representation for both discrete state
identification and safe planning. We provided algorithms for addressing the state identification problem,
and detailed the results of running those algorithms on realistic problems from the spacecraft domain.
Those algorithms performed well in certain cases, but it is unsound and evidence suggests there is a
well-defined subset of the problem space that causes a serious degradation in performance. The insights
from these tests motivate a number of algorithmic improvements described below. In addition, we have
not yet provided any algorithms for the safe planning problem or more general problems that violate the
assumptions of the safe planning formulation. These potential areas for future research are described
below.

9.1 Safe Planning

We described three variations of the safe planning problem. Each of these extend STRIPS-style planning
by allowing a disjunction over the starting conditions, a set of safety constraints that need not hold in ev-
ery state but must be monotonically increasing, and action costs. Recently, compilation of a STRIPS-style
planning problem to a graphical representation (e.g.,Graphplancite) or directly into a propositional satis-
fiabilty problem (e.g.,SATPLAN cite) has been shown to be a viable approach to planning. Conformant
Graphlancite solves the safe planning problem with unit costs, no safety constraints and the restriction that
all start states reach the goal state. We propose to address the safe planning problem by generalizing con-
formant graphplan to handle these additional problem features, or by similarly extending SATPLAN-style
approaches.

9.2 Adding Soundness to our Conservative State Identification Approximation

The technique of selective model extension, wherein we represent only those state variables whose failure
could be witnessed by a command, is complete but not sound. In using this technique to vastly cut down
the size of the representation and the search space, we eliminate past observations that would otherwise
rule out imposter trajectories. One solution is to simulate each hypothesized trajectory against the obser-
vations, thus ruling out any inconsistent trajectories. Conceptually, a simulation of a trajectory is simply a
consistency check of theT assigment and is linear in the length of the model. Performing a complete but
unsound search followed by a rapid soundness check therefore seems a promising approach.

However, our optimized trajectory representation depends upon the fact that without observations, in
many cases a failure at timet is equivalent to the same failure at timest − 1 or t + 1. That is, every
failure represents a window during which time the failure may have occurred. When attempting to check
a trajectory for consistency against the observations that actually occurred, we cannot rule out a trajectory
until we have checked it against every arrangment of its failures to times within the time windows the
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failures represent. While simulating a trajectory is a linear process, it is an open question as to whether we
can avoid checking an exponential number of time-varying variations of the hypothesized trajectories.

9.3 Interleaving Coverage Generation and Consistency Checking
We have seen that adding conflicts to the conflict coverage problem can radically reduce the amount
of time it takes for theGenerateCoveralgorithm to return a set of covers and for those covers to be
checked for consistency. In fact, if the conflicts discovered when checking the covers generated by a call
to GenerateCoverare added to theGenerateCovercall, GenerateCoverreturns just the consistent covers
almost immediately. Interleaving consistency checking and conflict coverage may significantly cut down
on the number of candidates returned byGenerateCoverand the amount of time both generation and
consistency checking require.

TheGenerateCoveralgorithm is currently implemented as a recursive procedure, building full covers
from the results of a smaller coverage problem. Thus no full covers are available until all covers are
returned by the top levelGenerateCoverinvocation. RecastingGenerateCoveras an iterative algorithm
will allow it to generate a number of full covers then check them for consistency, then add the conflicts to
the conflicts being covered and continue. Note that this does not effect the final output of the algorithm.
In the recursive formulation, all covers are checked for consistency in the final step, and any that contain a
conflict are eliminated. In the iterative formulation, conflicts are discovered earlier, and covers that contain
known conflicts are not generated. Some experimentation will be required to discover the appropriate
interleaving of cover generation and conflict checking.

9.4 Finite Horizons
A simple fixed time horizon limits the size of the transition system, and thus the amount of search that
can be done. As a side effect, it may also cut off consideration of overlapping failures in the past, as
seems to cause the largest performance degradations. The algorithms and implementations for a simple
time horizon are in place but have not yet been tested and investigated. A more interesting approach is
to choose the horizon more intelligently. Iteratively deepening the horizon would support adjusting the
search as time or uncertainty requires. Only exploring each device’s history up to the last point it was
considered to have failed should reduce the explosion in possible trajectories. Both of these approaches
require introducing a recency bias into the probability assignments to transition choices in order to be well
founded.

9.5 Reintroducing Observations
We have recently augmented theL2 implementation to allowMΣ andO to be duplicated at each time
step. This of course causes the transition system size to grow at an unmanageable rate. One alternative
is to duplicateMΣ andO at a small number of recent time steps to increase the likelihood that imposter
trajectories will be considered. This approach is largely implemented and will be tested and investigate
shortly. A more interesting approach is to selectively introduce portions ofMΣ andO in the same manner
that the transition system selectively introduces only those portions ofMT andΣ that are relevant at
each step. In the case ofMT this is rather simple. One or a few command assignments are made at each
time step, rendering most ofMT irrelevant. Typically all observations are available at every time step,
making the question of what portion ofMΣ to eliminate somewhat more complex. Ideally we would like
to introduce only those portions ofMΣ andO that will enable us to distinguish between two possible
trajectories. An approach then is to introduce the portions ofMT and Σ that are relevant given the
commanding history, then introduce only those portions ofMΣ andO that distinguish between possible
values of the introduced subset ofΣ. Techniques such as prime implicant generated used to reduce the
size of the introducedMT could also be used to reduceMΣ. Alternatively, if the introducedMΣ is yet
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too large, we will investigate characterizing how the size of the introduced portion ofMΣ can be traded
against diagnosis speed and specificity when searching for trajectories.

9.6 Active Testing
Model-based diagnosis gives us a lot of work on probe selection. In addition to the usual state determi-
nation techniques of MBD, we can issue commands. Thus we should look at distinguishing sequences as
well. That is, in the current possible states there may be no sensing action we can perform that disam-
biguates the states. However, if we issue command C, the result from each of our possible states may be a
new state such that the new set has a distinguishing sensing action.

9.7 Uniform Distributions
We have the equivalent of the “kidnapped robot” problem. In the kidnapped robot problem, the robot has
to navigate starting with completely uniform belief state. It may be in any location with equal probability.
The equivalent problem is a reboot of a spacecraft processor in flight, erasing the knowledge the system
accumulated about the state of the device. When we encounter a reboot or the kidnapped robot problem, we
will have a uniform distribution over all states. Since we are only representing the few most likely states,
we cannot represent this distribution. We will use the compositionality of the system to force devices
into a known state in the appropriate order. Commanding devices are controlled before the corresponding
commanded device. We will use the model to generate a homing sequence for each device, given that the
upstream devices are in known modes.

52



Chapter 10

Summary

10.1 Results Thus Far
The following items have been achieved by the author thus far

• Formulation of the trajectory tracking problem

• Correspondence toPOMDP

• Transition system representation

• Approximate representations

• Conflict coverage algorithm

• Algorithm implementation

• Experimental results in trajectory tracking

• Formulation of the safe planning problem

10.2 Proposed Work

10.2.1 Action Selection

• Mapping of transition system to Graphlan or SATPLAN

• Algorithm for maximally safe planning

• Algorithm for single goal-safe planning

• Algorithm implementation

• Experimental results in safe planning

10.2.2 State Identification

• Finite horizon experiments with state identification

• Improved state identification through complete soundness check or re-introduction of specific variables

We are currently investigating these and other extensions toL2. The resulting system will be evaluated
on Earth-bound testbeds representing an interferometer and a Mars propellant plant. In addition, it will be
flown as an experiment on the X-34 rocket plane in 2001 and the X-37 orbital vehicle in 2002.
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